Properties

Label 2128.2.fd
Level $2128$
Weight $2$
Character orbit 2128.fd
Rep. character $\chi_{2128}(97,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $468$
Sturm bound $640$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2128 = 2^{4} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2128.fd (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 133 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(640\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2128, [\chi])\).

Total New Old
Modular forms 1992 492 1500
Cusp forms 1848 468 1380
Eisenstein series 144 24 120

Trace form

\( 468 q + 3 q^{7} - 12 q^{9} + 6 q^{11} + 12 q^{15} - 15 q^{21} + 12 q^{23} - 12 q^{25} - 12 q^{29} + 21 q^{35} + 24 q^{39} - 36 q^{43} - 3 q^{49} + 12 q^{51} + 12 q^{53} - 12 q^{57} - 117 q^{63} - 90 q^{65}+ \cdots - 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2128, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2128, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2128, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(266, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(532, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1064, [\chi])\)\(^{\oplus 2}\)