Defining parameters
Level: | \( N \) | \(=\) | \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2156.cl (of order \(210\) and degree \(48\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 539 \) |
Character field: | \(\Q(\zeta_{210})\) | ||
Sturm bound: | \(672\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2156, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16416 | 2688 | 13728 |
Cusp forms | 15840 | 2688 | 13152 |
Eisenstein series | 576 | 0 | 576 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2156, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2156, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2156, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(539, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1078, [\chi])\)\(^{\oplus 2}\)