Properties

Label 2156.2.cl
Level 21562156
Weight 22
Character orbit 2156.cl
Rep. character χ2156(17,)\chi_{2156}(17,\cdot)
Character field Q(ζ210)\Q(\zeta_{210})
Dimension 26882688
Sturm bound 672672

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2156=227211 2156 = 2^{2} \cdot 7^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2156.cl (of order 210210 and degree 4848)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 539 539
Character field: Q(ζ210)\Q(\zeta_{210})
Sturm bound: 672672

Dimensions

The following table gives the dimensions of various subspaces of M2(2156,[χ])M_{2}(2156, [\chi]).

Total New Old
Modular forms 16416 2688 13728
Cusp forms 15840 2688 13152
Eisenstein series 576 0 576

Trace form

2688q+6q55q7+56q96q11+30q155q1744q23+50q25+63q2720q29+18q3154q33+45q35+10q37116q4547q47+103q49+396q99+O(q100) 2688 q + 6 q^{5} - 5 q^{7} + 56 q^{9} - 6 q^{11} + 30 q^{15} - 5 q^{17} - 44 q^{23} + 50 q^{25} + 63 q^{27} - 20 q^{29} + 18 q^{31} - 54 q^{33} + 45 q^{35} + 10 q^{37} - 116 q^{45} - 47 q^{47} + 103 q^{49}+ \cdots - 396 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(2156,[χ])S_{2}^{\mathrm{new}}(2156, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(2156,[χ])S_{2}^{\mathrm{old}}(2156, [\chi]) into lower level spaces

S2old(2156,[χ]) S_{2}^{\mathrm{old}}(2156, [\chi]) \simeq S2new(539,[χ])S_{2}^{\mathrm{new}}(539, [\chi])3^{\oplus 3}\oplusS2new(1078,[χ])S_{2}^{\mathrm{new}}(1078, [\chi])2^{\oplus 2}