Properties

Label 2156.4.bg
Level $2156$
Weight $4$
Character orbit 2156.bg
Rep. character $\chi_{2156}(361,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $960$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2156.bg (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 77 \)
Character field: \(\Q(\zeta_{15})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2156, [\chi])\).

Total New Old
Modular forms 8256 960 7296
Cusp forms 7872 960 6912
Eisenstein series 384 0 384

Trace form

\( 960 q + 8 q^{5} + 1176 q^{9} - 36 q^{11} - 104 q^{13} + 492 q^{15} - 50 q^{17} + 144 q^{19} + 56 q^{23} + 2588 q^{25} + 36 q^{27} - 412 q^{29} - 414 q^{31} - 414 q^{33} - 348 q^{37} + 244 q^{39} - 2668 q^{41}+ \cdots + 17688 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2156, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2156, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2156, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(308, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(539, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1078, [\chi])\)\(^{\oplus 2}\)