Properties

Label 2160.2.h.d.431.1
Level $2160$
Weight $2$
Character 2160.431
Analytic conductor $17.248$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(431,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.431");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 431.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2160.431
Dual form 2160.2.h.d.431.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{5} -1.73205i q^{7} -3.46410 q^{11} +1.00000 q^{13} +1.73205i q^{19} -3.46410 q^{23} -1.00000 q^{25} -6.00000i q^{29} -3.46410i q^{31} -1.73205 q^{35} -7.00000 q^{37} +6.00000i q^{41} -3.46410i q^{43} -6.92820 q^{47} +4.00000 q^{49} +6.00000i q^{53} +3.46410i q^{55} -13.8564 q^{59} -1.00000 q^{61} -1.00000i q^{65} +5.19615i q^{67} -3.46410 q^{71} +1.00000 q^{73} +6.00000i q^{77} +8.66025i q^{79} -10.3923 q^{83} -1.73205i q^{91} +1.73205 q^{95} +1.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{13} - 4 q^{25} - 28 q^{37} + 16 q^{49} - 4 q^{61} + 4 q^{73} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i
\(6\) 0 0
\(7\) − 1.73205i − 0.654654i −0.944911 0.327327i \(-0.893852\pi\)
0.944911 0.327327i \(-0.106148\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.46410 −1.04447 −0.522233 0.852803i \(-0.674901\pi\)
−0.522233 + 0.852803i \(0.674901\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 1.73205i 0.397360i 0.980064 + 0.198680i \(0.0636654\pi\)
−0.980064 + 0.198680i \(0.936335\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.46410 −0.722315 −0.361158 0.932505i \(-0.617618\pi\)
−0.361158 + 0.932505i \(0.617618\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 6.00000i − 1.11417i −0.830455 0.557086i \(-0.811919\pi\)
0.830455 0.557086i \(-0.188081\pi\)
\(30\) 0 0
\(31\) − 3.46410i − 0.622171i −0.950382 0.311086i \(-0.899307\pi\)
0.950382 0.311086i \(-0.100693\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.73205 −0.292770
\(36\) 0 0
\(37\) −7.00000 −1.15079 −0.575396 0.817875i \(-0.695152\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000i 0.937043i 0.883452 + 0.468521i \(0.155213\pi\)
−0.883452 + 0.468521i \(0.844787\pi\)
\(42\) 0 0
\(43\) − 3.46410i − 0.528271i −0.964486 0.264135i \(-0.914913\pi\)
0.964486 0.264135i \(-0.0850865\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.92820 −1.01058 −0.505291 0.862949i \(-0.668615\pi\)
−0.505291 + 0.862949i \(0.668615\pi\)
\(48\) 0 0
\(49\) 4.00000 0.571429
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) 3.46410i 0.467099i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −13.8564 −1.80395 −0.901975 0.431788i \(-0.857883\pi\)
−0.901975 + 0.431788i \(0.857883\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 1.00000i − 0.124035i
\(66\) 0 0
\(67\) 5.19615i 0.634811i 0.948290 + 0.317406i \(0.102812\pi\)
−0.948290 + 0.317406i \(0.897188\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.46410 −0.411113 −0.205557 0.978645i \(-0.565900\pi\)
−0.205557 + 0.978645i \(0.565900\pi\)
\(72\) 0 0
\(73\) 1.00000 0.117041 0.0585206 0.998286i \(-0.481362\pi\)
0.0585206 + 0.998286i \(0.481362\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.00000i 0.683763i
\(78\) 0 0
\(79\) 8.66025i 0.974355i 0.873303 + 0.487177i \(0.161973\pi\)
−0.873303 + 0.487177i \(0.838027\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.3923 −1.14070 −0.570352 0.821401i \(-0.693193\pi\)
−0.570352 + 0.821401i \(0.693193\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) − 1.73205i − 0.181568i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.73205 0.177705
\(96\) 0 0
\(97\) 1.00000 0.101535 0.0507673 0.998711i \(-0.483833\pi\)
0.0507673 + 0.998711i \(0.483833\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 12.0000i − 1.19404i −0.802225 0.597022i \(-0.796350\pi\)
0.802225 0.597022i \(-0.203650\pi\)
\(102\) 0 0
\(103\) − 8.66025i − 0.853320i −0.904412 0.426660i \(-0.859690\pi\)
0.904412 0.426660i \(-0.140310\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −17.3205 −1.67444 −0.837218 0.546869i \(-0.815820\pi\)
−0.837218 + 0.546869i \(0.815820\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.00000i 0.564433i 0.959351 + 0.282216i \(0.0910696\pi\)
−0.959351 + 0.282216i \(0.908930\pi\)
\(114\) 0 0
\(115\) 3.46410i 0.323029i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) − 10.3923i − 0.922168i −0.887357 0.461084i \(-0.847461\pi\)
0.887357 0.461084i \(-0.152539\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −13.8564 −1.21064 −0.605320 0.795982i \(-0.706955\pi\)
−0.605320 + 0.795982i \(0.706955\pi\)
\(132\) 0 0
\(133\) 3.00000 0.260133
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 18.0000i − 1.53784i −0.639343 0.768922i \(-0.720793\pi\)
0.639343 0.768922i \(-0.279207\pi\)
\(138\) 0 0
\(139\) 22.5167i 1.90984i 0.296866 + 0.954919i \(0.404058\pi\)
−0.296866 + 0.954919i \(0.595942\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.46410 −0.289683
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.0000i 0.983078i 0.870855 + 0.491539i \(0.163566\pi\)
−0.870855 + 0.491539i \(0.836434\pi\)
\(150\) 0 0
\(151\) 1.73205i 0.140952i 0.997513 + 0.0704761i \(0.0224519\pi\)
−0.997513 + 0.0704761i \(0.977548\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.46410 −0.278243
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.00000i 0.472866i
\(162\) 0 0
\(163\) − 15.5885i − 1.22098i −0.792023 0.610491i \(-0.790972\pi\)
0.792023 0.610491i \(-0.209028\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.8564 1.07224 0.536120 0.844141i \(-0.319889\pi\)
0.536120 + 0.844141i \(0.319889\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 24.0000i − 1.82469i −0.409426 0.912343i \(-0.634271\pi\)
0.409426 0.912343i \(-0.365729\pi\)
\(174\) 0 0
\(175\) 1.73205i 0.130931i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.46410 −0.258919 −0.129460 0.991585i \(-0.541324\pi\)
−0.129460 + 0.991585i \(0.541324\pi\)
\(180\) 0 0
\(181\) −5.00000 −0.371647 −0.185824 0.982583i \(-0.559495\pi\)
−0.185824 + 0.982583i \(0.559495\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.00000i 0.514650i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −7.00000 −0.503871 −0.251936 0.967744i \(-0.581067\pi\)
−0.251936 + 0.967744i \(0.581067\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000i 0.854965i 0.904024 + 0.427482i \(0.140599\pi\)
−0.904024 + 0.427482i \(0.859401\pi\)
\(198\) 0 0
\(199\) 15.5885i 1.10504i 0.833501 + 0.552518i \(0.186333\pi\)
−0.833501 + 0.552518i \(0.813667\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −10.3923 −0.729397
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 6.00000i − 0.415029i
\(210\) 0 0
\(211\) − 25.9808i − 1.78859i −0.447478 0.894295i \(-0.647678\pi\)
0.447478 0.894295i \(-0.352322\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.46410 −0.236250
\(216\) 0 0
\(217\) −6.00000 −0.407307
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 24.2487i − 1.62381i −0.583787 0.811907i \(-0.698430\pi\)
0.583787 0.811907i \(-0.301570\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.46410 −0.229920 −0.114960 0.993370i \(-0.536674\pi\)
−0.114960 + 0.993370i \(0.536674\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 12.0000i − 0.786146i −0.919507 0.393073i \(-0.871412\pi\)
0.919507 0.393073i \(-0.128588\pi\)
\(234\) 0 0
\(235\) 6.92820i 0.451946i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.46410 0.224074 0.112037 0.993704i \(-0.464262\pi\)
0.112037 + 0.993704i \(0.464262\pi\)
\(240\) 0 0
\(241\) 7.00000 0.450910 0.225455 0.974254i \(-0.427613\pi\)
0.225455 + 0.974254i \(0.427613\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 4.00000i − 0.255551i
\(246\) 0 0
\(247\) 1.73205i 0.110208i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.46410 −0.218652 −0.109326 0.994006i \(-0.534869\pi\)
−0.109326 + 0.994006i \(0.534869\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.0000i 0.748539i 0.927320 + 0.374270i \(0.122107\pi\)
−0.927320 + 0.374270i \(0.877893\pi\)
\(258\) 0 0
\(259\) 12.1244i 0.753371i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 27.7128 1.70885 0.854423 0.519579i \(-0.173911\pi\)
0.854423 + 0.519579i \(0.173911\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.0000i 1.46331i 0.681677 + 0.731653i \(0.261251\pi\)
−0.681677 + 0.731653i \(0.738749\pi\)
\(270\) 0 0
\(271\) 8.66025i 0.526073i 0.964786 + 0.263036i \(0.0847240\pi\)
−0.964786 + 0.263036i \(0.915276\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.46410 0.208893
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 12.0000i − 0.715860i −0.933748 0.357930i \(-0.883483\pi\)
0.933748 0.357930i \(-0.116517\pi\)
\(282\) 0 0
\(283\) − 17.3205i − 1.02960i −0.857311 0.514799i \(-0.827867\pi\)
0.857311 0.514799i \(-0.172133\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.3923 0.613438
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 18.0000i 1.05157i 0.850617 + 0.525786i \(0.176229\pi\)
−0.850617 + 0.525786i \(0.823771\pi\)
\(294\) 0 0
\(295\) 13.8564i 0.806751i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.46410 −0.200334
\(300\) 0 0
\(301\) −6.00000 −0.345834
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.00000i 0.0572598i
\(306\) 0 0
\(307\) 3.46410i 0.197707i 0.995102 + 0.0988534i \(0.0315175\pi\)
−0.995102 + 0.0988534i \(0.968483\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 27.7128 1.57145 0.785725 0.618576i \(-0.212290\pi\)
0.785725 + 0.618576i \(0.212290\pi\)
\(312\) 0 0
\(313\) −19.0000 −1.07394 −0.536972 0.843600i \(-0.680432\pi\)
−0.536972 + 0.843600i \(0.680432\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 12.0000i − 0.673987i −0.941507 0.336994i \(-0.890590\pi\)
0.941507 0.336994i \(-0.109410\pi\)
\(318\) 0 0
\(319\) 20.7846i 1.16371i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12.0000i 0.661581i
\(330\) 0 0
\(331\) − 19.0526i − 1.04722i −0.851957 0.523612i \(-0.824584\pi\)
0.851957 0.523612i \(-0.175416\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.19615 0.283896
\(336\) 0 0
\(337\) 13.0000 0.708155 0.354078 0.935216i \(-0.384795\pi\)
0.354078 + 0.935216i \(0.384795\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.0000i 0.649836i
\(342\) 0 0
\(343\) − 19.0526i − 1.02874i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.3923 −0.557888 −0.278944 0.960307i \(-0.589984\pi\)
−0.278944 + 0.960307i \(0.589984\pi\)
\(348\) 0 0
\(349\) −13.0000 −0.695874 −0.347937 0.937518i \(-0.613118\pi\)
−0.347937 + 0.937518i \(0.613118\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 12.0000i − 0.638696i −0.947638 0.319348i \(-0.896536\pi\)
0.947638 0.319348i \(-0.103464\pi\)
\(354\) 0 0
\(355\) 3.46410i 0.183855i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.2487 1.27980 0.639899 0.768459i \(-0.278976\pi\)
0.639899 + 0.768459i \(0.278976\pi\)
\(360\) 0 0
\(361\) 16.0000 0.842105
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 1.00000i − 0.0523424i
\(366\) 0 0
\(367\) − 15.5885i − 0.813711i −0.913493 0.406855i \(-0.866625\pi\)
0.913493 0.406855i \(-0.133375\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.3923 0.539542
\(372\) 0 0
\(373\) −7.00000 −0.362446 −0.181223 0.983442i \(-0.558006\pi\)
−0.181223 + 0.983442i \(0.558006\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 6.00000i − 0.309016i
\(378\) 0 0
\(379\) 36.3731i 1.86836i 0.356803 + 0.934179i \(0.383867\pi\)
−0.356803 + 0.934179i \(0.616133\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13.8564 0.708029 0.354015 0.935240i \(-0.384816\pi\)
0.354015 + 0.935240i \(0.384816\pi\)
\(384\) 0 0
\(385\) 6.00000 0.305788
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 36.0000i − 1.82527i −0.408773 0.912636i \(-0.634043\pi\)
0.408773 0.912636i \(-0.365957\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.66025 0.435745
\(396\) 0 0
\(397\) −34.0000 −1.70641 −0.853206 0.521575i \(-0.825345\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000i 0.898877i 0.893311 + 0.449439i \(0.148376\pi\)
−0.893311 + 0.449439i \(0.851624\pi\)
\(402\) 0 0
\(403\) − 3.46410i − 0.172559i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24.2487 1.20196
\(408\) 0 0
\(409\) −17.0000 −0.840596 −0.420298 0.907386i \(-0.638074\pi\)
−0.420298 + 0.907386i \(0.638074\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 24.0000i 1.18096i
\(414\) 0 0
\(415\) 10.3923i 0.510138i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.7846 1.01539 0.507697 0.861536i \(-0.330497\pi\)
0.507697 + 0.861536i \(0.330497\pi\)
\(420\) 0 0
\(421\) −17.0000 −0.828529 −0.414265 0.910156i \(-0.635961\pi\)
−0.414265 + 0.910156i \(0.635961\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.73205i 0.0838198i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 24.2487 1.16802 0.584010 0.811747i \(-0.301483\pi\)
0.584010 + 0.811747i \(0.301483\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 6.00000i − 0.287019i
\(438\) 0 0
\(439\) 38.1051i 1.81866i 0.416078 + 0.909329i \(0.363404\pi\)
−0.416078 + 0.909329i \(0.636596\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.8564 −0.658338 −0.329169 0.944271i \(-0.606769\pi\)
−0.329169 + 0.944271i \(0.606769\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 24.0000i − 1.13263i −0.824189 0.566315i \(-0.808369\pi\)
0.824189 0.566315i \(-0.191631\pi\)
\(450\) 0 0
\(451\) − 20.7846i − 0.978709i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.73205 −0.0811998
\(456\) 0 0
\(457\) 34.0000 1.59045 0.795226 0.606313i \(-0.207352\pi\)
0.795226 + 0.606313i \(0.207352\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 24.0000i − 1.11779i −0.829238 0.558896i \(-0.811225\pi\)
0.829238 0.558896i \(-0.188775\pi\)
\(462\) 0 0
\(463\) − 8.66025i − 0.402476i −0.979542 0.201238i \(-0.935504\pi\)
0.979542 0.201238i \(-0.0644965\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 27.7128 1.28240 0.641198 0.767375i \(-0.278438\pi\)
0.641198 + 0.767375i \(0.278438\pi\)
\(468\) 0 0
\(469\) 9.00000 0.415581
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.0000i 0.551761i
\(474\) 0 0
\(475\) − 1.73205i − 0.0794719i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.3923 0.474837 0.237418 0.971408i \(-0.423699\pi\)
0.237418 + 0.971408i \(0.423699\pi\)
\(480\) 0 0
\(481\) −7.00000 −0.319173
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 1.00000i − 0.0454077i
\(486\) 0 0
\(487\) − 15.5885i − 0.706380i −0.935552 0.353190i \(-0.885097\pi\)
0.935552 0.353190i \(-0.114903\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −10.3923 −0.468998 −0.234499 0.972116i \(-0.575345\pi\)
−0.234499 + 0.972116i \(0.575345\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.00000i 0.269137i
\(498\) 0 0
\(499\) 24.2487i 1.08552i 0.839887 + 0.542761i \(0.182621\pi\)
−0.839887 + 0.542761i \(0.817379\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 31.1769 1.39011 0.695055 0.718957i \(-0.255380\pi\)
0.695055 + 0.718957i \(0.255380\pi\)
\(504\) 0 0
\(505\) −12.0000 −0.533993
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 6.00000i − 0.265945i −0.991120 0.132973i \(-0.957548\pi\)
0.991120 0.132973i \(-0.0424523\pi\)
\(510\) 0 0
\(511\) − 1.73205i − 0.0766214i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.66025 −0.381616
\(516\) 0 0
\(517\) 24.0000 1.05552
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 18.0000i − 0.788594i −0.918983 0.394297i \(-0.870988\pi\)
0.918983 0.394297i \(-0.129012\pi\)
\(522\) 0 0
\(523\) − 29.4449i − 1.28753i −0.765222 0.643767i \(-0.777371\pi\)
0.765222 0.643767i \(-0.222629\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −11.0000 −0.478261
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.00000i 0.259889i
\(534\) 0 0
\(535\) 17.3205i 0.748831i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −13.8564 −0.596838
\(540\) 0 0
\(541\) 7.00000 0.300954 0.150477 0.988614i \(-0.451919\pi\)
0.150477 + 0.988614i \(0.451919\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 10.0000i − 0.428353i
\(546\) 0 0
\(547\) 12.1244i 0.518400i 0.965824 + 0.259200i \(0.0834589\pi\)
−0.965824 + 0.259200i \(0.916541\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.3923 0.442727
\(552\) 0 0
\(553\) 15.0000 0.637865
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.0000i 0.508456i 0.967144 + 0.254228i \(0.0818214\pi\)
−0.967144 + 0.254228i \(0.918179\pi\)
\(558\) 0 0
\(559\) − 3.46410i − 0.146516i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 34.6410 1.45994 0.729972 0.683477i \(-0.239533\pi\)
0.729972 + 0.683477i \(0.239533\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) − 19.0526i − 0.797325i −0.917098 0.398662i \(-0.869475\pi\)
0.917098 0.398662i \(-0.130525\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.46410 0.144463
\(576\) 0 0
\(577\) −43.0000 −1.79011 −0.895057 0.445952i \(-0.852865\pi\)
−0.895057 + 0.445952i \(0.852865\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 18.0000i 0.746766i
\(582\) 0 0
\(583\) − 20.7846i − 0.860811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.3923 0.428936 0.214468 0.976731i \(-0.431198\pi\)
0.214468 + 0.976731i \(0.431198\pi\)
\(588\) 0 0
\(589\) 6.00000 0.247226
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 18.0000i 0.739171i 0.929197 + 0.369586i \(0.120500\pi\)
−0.929197 + 0.369586i \(0.879500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 31.1769 1.27385 0.636927 0.770924i \(-0.280205\pi\)
0.636927 + 0.770924i \(0.280205\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 1.00000i − 0.0406558i
\(606\) 0 0
\(607\) − 8.66025i − 0.351509i −0.984434 0.175754i \(-0.943764\pi\)
0.984434 0.175754i \(-0.0562365\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.92820 −0.280285
\(612\) 0 0
\(613\) 29.0000 1.17130 0.585649 0.810564i \(-0.300840\pi\)
0.585649 + 0.810564i \(0.300840\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 30.0000i 1.20775i 0.797077 + 0.603877i \(0.206378\pi\)
−0.797077 + 0.603877i \(0.793622\pi\)
\(618\) 0 0
\(619\) 22.5167i 0.905021i 0.891759 + 0.452510i \(0.149471\pi\)
−0.891759 + 0.452510i \(0.850529\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) − 5.19615i − 0.206856i −0.994637 0.103428i \(-0.967019\pi\)
0.994637 0.103428i \(-0.0329811\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −10.3923 −0.412406
\(636\) 0 0
\(637\) 4.00000 0.158486
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 24.0000i 0.947943i 0.880540 + 0.473972i \(0.157180\pi\)
−0.880540 + 0.473972i \(0.842820\pi\)
\(642\) 0 0
\(643\) − 31.1769i − 1.22950i −0.788723 0.614749i \(-0.789257\pi\)
0.788723 0.614749i \(-0.210743\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.2487 0.953315 0.476658 0.879089i \(-0.341848\pi\)
0.476658 + 0.879089i \(0.341848\pi\)
\(648\) 0 0
\(649\) 48.0000 1.88416
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 36.0000i − 1.40879i −0.709809 0.704394i \(-0.751219\pi\)
0.709809 0.704394i \(-0.248781\pi\)
\(654\) 0 0
\(655\) 13.8564i 0.541415i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 23.0000 0.894596 0.447298 0.894385i \(-0.352386\pi\)
0.447298 + 0.894385i \(0.352386\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 3.00000i − 0.116335i
\(666\) 0 0
\(667\) 20.7846i 0.804783i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.46410 0.133730
\(672\) 0 0
\(673\) −19.0000 −0.732396 −0.366198 0.930537i \(-0.619341\pi\)
−0.366198 + 0.930537i \(0.619341\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 36.0000i − 1.38359i −0.722093 0.691796i \(-0.756820\pi\)
0.722093 0.691796i \(-0.243180\pi\)
\(678\) 0 0
\(679\) − 1.73205i − 0.0664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −17.3205 −0.662751 −0.331375 0.943499i \(-0.607513\pi\)
−0.331375 + 0.943499i \(0.607513\pi\)
\(684\) 0 0
\(685\) −18.0000 −0.687745
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.00000i 0.228582i
\(690\) 0 0
\(691\) − 10.3923i − 0.395342i −0.980268 0.197671i \(-0.936662\pi\)
0.980268 0.197671i \(-0.0633378\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 22.5167 0.854106
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 30.0000i 1.13308i 0.824033 + 0.566542i \(0.191719\pi\)
−0.824033 + 0.566542i \(0.808281\pi\)
\(702\) 0 0
\(703\) − 12.1244i − 0.457279i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −20.7846 −0.781686
\(708\) 0 0
\(709\) −17.0000 −0.638448 −0.319224 0.947679i \(-0.603422\pi\)
−0.319224 + 0.947679i \(0.603422\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12.0000i 0.449404i
\(714\) 0 0
\(715\) 3.46410i 0.129550i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −17.3205 −0.645946 −0.322973 0.946408i \(-0.604682\pi\)
−0.322973 + 0.946408i \(0.604682\pi\)
\(720\) 0 0
\(721\) −15.0000 −0.558629
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.00000i 0.222834i
\(726\) 0 0
\(727\) − 24.2487i − 0.899335i −0.893196 0.449667i \(-0.851542\pi\)
0.893196 0.449667i \(-0.148458\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −26.0000 −0.960332 −0.480166 0.877178i \(-0.659424\pi\)
−0.480166 + 0.877178i \(0.659424\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 18.0000i − 0.663039i
\(738\) 0 0
\(739\) 31.1769i 1.14686i 0.819254 + 0.573431i \(0.194388\pi\)
−0.819254 + 0.573431i \(0.805612\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −13.8564 −0.508342 −0.254171 0.967159i \(-0.581803\pi\)
−0.254171 + 0.967159i \(0.581803\pi\)
\(744\) 0 0
\(745\) 12.0000 0.439646
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 30.0000i 1.09618i
\(750\) 0 0
\(751\) 29.4449i 1.07446i 0.843436 + 0.537229i \(0.180529\pi\)
−0.843436 + 0.537229i \(0.819471\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.73205 0.0630358
\(756\) 0 0
\(757\) −47.0000 −1.70824 −0.854122 0.520073i \(-0.825905\pi\)
−0.854122 + 0.520073i \(0.825905\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 18.0000i − 0.652499i −0.945284 0.326250i \(-0.894215\pi\)
0.945284 0.326250i \(-0.105785\pi\)
\(762\) 0 0
\(763\) − 17.3205i − 0.627044i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13.8564 −0.500326
\(768\) 0 0
\(769\) −13.0000 −0.468792 −0.234396 0.972141i \(-0.575311\pi\)
−0.234396 + 0.972141i \(0.575311\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 18.0000i − 0.647415i −0.946157 0.323708i \(-0.895071\pi\)
0.946157 0.323708i \(-0.104929\pi\)
\(774\) 0 0
\(775\) 3.46410i 0.124434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −10.3923 −0.372343
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 2.00000i − 0.0713831i
\(786\) 0 0
\(787\) − 8.66025i − 0.308705i −0.988016 0.154352i \(-0.950671\pi\)
0.988016 0.154352i \(-0.0493291\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 10.3923 0.369508
\(792\) 0 0
\(793\) −1.00000 −0.0355110
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 12.0000i − 0.425062i −0.977154 0.212531i \(-0.931829\pi\)
0.977154 0.212531i \(-0.0681706\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.46410 −0.122245
\(804\) 0 0
\(805\) 6.00000 0.211472
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12.0000i 0.421898i 0.977497 + 0.210949i \(0.0676553\pi\)
−0.977497 + 0.210949i \(0.932345\pi\)
\(810\) 0 0
\(811\) − 38.1051i − 1.33805i −0.743239 0.669026i \(-0.766712\pi\)
0.743239 0.669026i \(-0.233288\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −15.5885 −0.546040
\(816\) 0 0
\(817\) 6.00000 0.209913
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) − 15.5885i − 0.543379i −0.962385 0.271690i \(-0.912418\pi\)
0.962385 0.271690i \(-0.0875824\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −34.6410 −1.20459 −0.602293 0.798275i \(-0.705746\pi\)
−0.602293 + 0.798275i \(0.705746\pi\)
\(828\) 0 0
\(829\) 43.0000 1.49345 0.746726 0.665132i \(-0.231625\pi\)
0.746726 + 0.665132i \(0.231625\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) − 13.8564i − 0.479521i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13.8564 0.478376 0.239188 0.970973i \(-0.423119\pi\)
0.239188 + 0.970973i \(0.423119\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.0000i 0.412813i
\(846\) 0 0
\(847\) − 1.73205i − 0.0595140i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 24.2487 0.831235
\(852\) 0 0
\(853\) −7.00000 −0.239675 −0.119838 0.992793i \(-0.538237\pi\)
−0.119838 + 0.992793i \(0.538237\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 54.0000i 1.84460i 0.386469 + 0.922302i \(0.373695\pi\)
−0.386469 + 0.922302i \(0.626305\pi\)
\(858\) 0 0
\(859\) 43.3013i 1.47742i 0.674023 + 0.738710i \(0.264565\pi\)
−0.674023 + 0.738710i \(0.735435\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −41.5692 −1.41503 −0.707516 0.706697i \(-0.750184\pi\)
−0.707516 + 0.706697i \(0.750184\pi\)
\(864\) 0 0
\(865\) −24.0000 −0.816024
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 30.0000i − 1.01768i
\(870\) 0 0
\(871\) 5.19615i 0.176065i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.73205 0.0585540
\(876\) 0 0
\(877\) 5.00000 0.168838 0.0844190 0.996430i \(-0.473097\pi\)
0.0844190 + 0.996430i \(0.473097\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 54.0000i − 1.81931i −0.415369 0.909653i \(-0.636347\pi\)
0.415369 0.909653i \(-0.363653\pi\)
\(882\) 0 0
\(883\) 39.8372i 1.34063i 0.742078 + 0.670314i \(0.233840\pi\)
−0.742078 + 0.670314i \(0.766160\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −13.8564 −0.465253 −0.232626 0.972566i \(-0.574732\pi\)
−0.232626 + 0.972566i \(0.574732\pi\)
\(888\) 0 0
\(889\) −18.0000 −0.603701
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 12.0000i − 0.401565i
\(894\) 0 0
\(895\) 3.46410i 0.115792i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −20.7846 −0.693206
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.00000i 0.166206i
\(906\) 0 0
\(907\) 39.8372i 1.32277i 0.750046 + 0.661386i \(0.230031\pi\)
−0.750046 + 0.661386i \(0.769969\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −48.4974 −1.60679 −0.803396 0.595446i \(-0.796976\pi\)
−0.803396 + 0.595446i \(0.796976\pi\)
\(912\) 0 0
\(913\) 36.0000 1.19143
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 24.0000i 0.792550i
\(918\) 0 0
\(919\) 24.2487i 0.799891i 0.916539 + 0.399946i \(0.130971\pi\)
−0.916539 + 0.399946i \(0.869029\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.46410 −0.114022
\(924\) 0 0
\(925\) 7.00000 0.230159
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 30.0000i 0.984268i 0.870519 + 0.492134i \(0.163783\pi\)
−0.870519 + 0.492134i \(0.836217\pi\)
\(930\) 0 0
\(931\) 6.92820i 0.227063i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −43.0000 −1.40475 −0.702374 0.711808i \(-0.747877\pi\)
−0.702374 + 0.711808i \(0.747877\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 30.0000i − 0.977972i −0.872292 0.488986i \(-0.837367\pi\)
0.872292 0.488986i \(-0.162633\pi\)
\(942\) 0 0
\(943\) − 20.7846i − 0.676840i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 1.00000 0.0324614
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 60.0000i − 1.94359i −0.235826 0.971795i \(-0.575780\pi\)
0.235826 0.971795i \(-0.424220\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −31.1769 −1.00676
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.00000i 0.225338i
\(966\) 0 0
\(967\) − 43.3013i − 1.39247i −0.717812 0.696237i \(-0.754856\pi\)
0.717812 0.696237i \(-0.245144\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −34.6410 −1.11168 −0.555842 0.831288i \(-0.687604\pi\)
−0.555842 + 0.831288i \(0.687604\pi\)
\(972\) 0 0
\(973\) 39.0000 1.25028
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 54.0000i − 1.72761i −0.503824 0.863807i \(-0.668074\pi\)
0.503824 0.863807i \(-0.331926\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.46410 0.110488 0.0552438 0.998473i \(-0.482406\pi\)
0.0552438 + 0.998473i \(0.482406\pi\)
\(984\) 0 0
\(985\) 12.0000 0.382352
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.0000i 0.381578i
\(990\) 0 0
\(991\) 29.4449i 0.935347i 0.883901 + 0.467673i \(0.154908\pi\)
−0.883901 + 0.467673i \(0.845092\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 15.5885 0.494187
\(996\) 0 0
\(997\) 38.0000 1.20347 0.601736 0.798695i \(-0.294476\pi\)
0.601736 + 0.798695i \(0.294476\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.2.h.d.431.1 4
3.2 odd 2 inner 2160.2.h.d.431.3 yes 4
4.3 odd 2 inner 2160.2.h.d.431.2 yes 4
12.11 even 2 inner 2160.2.h.d.431.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2160.2.h.d.431.1 4 1.1 even 1 trivial
2160.2.h.d.431.2 yes 4 4.3 odd 2 inner
2160.2.h.d.431.3 yes 4 3.2 odd 2 inner
2160.2.h.d.431.4 yes 4 12.11 even 2 inner