Properties

Label 2160.4.cr
Level 21602160
Weight 44
Character orbit 2160.cr
Rep. character χ2160(197,)\chi_{2160}(197,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 17121712
Sturm bound 17281728

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2160=24335 2160 = 2^{4} \cdot 3^{3} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2160.cr (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 720 720
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 17281728

Dimensions

The following table gives the dimensions of various subspaces of M4(2160,[χ])M_{4}(2160, [\chi]).

Total New Old
Modular forms 5232 1744 3488
Cusp forms 5136 1712 3424
Eisenstein series 96 32 64

Trace form

1712q+6q2+6q5+24q10+12q114q16+6q20+30q22+248q288q31+1386q32+396q34+54q38+248q404q4388q46+12q47+6q50+4q97+O(q100) 1712 q + 6 q^{2} + 6 q^{5} + 24 q^{10} + 12 q^{11} - 4 q^{16} + 6 q^{20} + 30 q^{22} + 248 q^{28} - 8 q^{31} + 1386 q^{32} + 396 q^{34} + 54 q^{38} + 248 q^{40} - 4 q^{43} - 88 q^{46} + 12 q^{47} + 6 q^{50}+ \cdots - 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(2160,[χ])S_{4}^{\mathrm{new}}(2160, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(2160,[χ])S_{4}^{\mathrm{old}}(2160, [\chi]) into lower level spaces

S4old(2160,[χ]) S_{4}^{\mathrm{old}}(2160, [\chi]) \simeq S4new(720,[χ])S_{4}^{\mathrm{new}}(720, [\chi])2^{\oplus 2}