Defining parameters
Level: | \( N \) | \(=\) | \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2160.x (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(1728\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(2160, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2664 | 288 | 2376 |
Cusp forms | 2520 | 288 | 2232 |
Eisenstein series | 144 | 0 | 144 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(2160, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(2160, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(2160, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(540, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 2}\)