Defining parameters
Level: | \( N \) | \(=\) | \( 2175 = 3 \cdot 5^{2} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2175.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 435 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(300\) | ||
Trace bound: | \(14\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2175, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 20 | 16 |
Cusp forms | 24 | 16 | 8 |
Eisenstein series | 12 | 4 | 8 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 16 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2175, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
2175.1.b.a | $2$ | $1.085$ | \(\Q(\sqrt{-1}) \) | $D_{3}$ | \(\Q(\sqrt{-87}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-i q^{2}-i q^{3}-q^{6}-i q^{7}-i q^{8}+\cdots\) |
2175.1.b.b | $2$ | $1.085$ | \(\Q(\sqrt{-1}) \) | $D_{3}$ | \(\Q(\sqrt{-87}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-i q^{2}-i q^{3}-q^{6}+i q^{7}-i q^{8}+\cdots\) |
2175.1.b.c | $6$ | $1.085$ | 6.0.419904.1 | $D_{9}$ | \(\Q(\sqrt{-87}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{5}q^{2}-\beta _{3}q^{3}+(-1-\beta _{2}+\beta _{4}+\cdots)q^{4}+\cdots\) |
2175.1.b.d | $6$ | $1.085$ | 6.0.419904.1 | $D_{9}$ | \(\Q(\sqrt{-87}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+(-1+\beta _{2})q^{4}+(\beta _{2}+\cdots)q^{6}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(2175, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2175, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)