Properties

Label 2175.1.b
Level $2175$
Weight $1$
Character orbit 2175.b
Rep. character $\chi_{2175}(2174,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $4$
Sturm bound $300$
Trace bound $14$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2175.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 435 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(300\)
Trace bound: \(14\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2175, [\chi])\).

Total New Old
Modular forms 36 20 16
Cusp forms 24 16 8
Eisenstein series 12 4 8

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\( 16 q - 12 q^{4} - 4 q^{6} - 16 q^{9} + 8 q^{16} + 8 q^{24} + 8 q^{34} + 12 q^{36} - 12 q^{49} - 4 q^{51} + 4 q^{54} - 4 q^{64} + 16 q^{81} - 8 q^{91} + 8 q^{94} - 12 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2175, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2175.1.b.a 2175.b 435.b $2$ $1.085$ \(\Q(\sqrt{-1}) \) $D_{3}$ \(\Q(\sqrt{-87}) \) None 87.1.d.a \(0\) \(0\) \(0\) \(0\) \(q-i q^{2}-i q^{3}-q^{6}-i q^{7}-i q^{8}+\cdots\)
2175.1.b.b 2175.b 435.b $2$ $1.085$ \(\Q(\sqrt{-1}) \) $D_{3}$ \(\Q(\sqrt{-87}) \) None 87.1.d.a \(0\) \(0\) \(0\) \(0\) \(q-i q^{2}-i q^{3}-q^{6}+i q^{7}-i q^{8}+\cdots\)
2175.1.b.c 2175.b 435.b $6$ $1.085$ 6.0.419904.1 $D_{9}$ \(\Q(\sqrt{-87}) \) None 2175.1.h.c \(0\) \(0\) \(0\) \(0\) \(q+\beta _{5}q^{2}-\beta _{3}q^{3}+(-1-\beta _{2}+\beta _{4}+\cdots)q^{4}+\cdots\)
2175.1.b.d 2175.b 435.b $6$ $1.085$ 6.0.419904.1 $D_{9}$ \(\Q(\sqrt{-87}) \) None 2175.1.h.c \(0\) \(0\) \(0\) \(0\) \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+(-1+\beta _{2})q^{4}+(\beta _{2}+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2175, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2175, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)