Defining parameters
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.k (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(220, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 84 | 12 | 72 |
Cusp forms | 60 | 12 | 48 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(220, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
220.2.k.a | $4$ | $1.757$ | \(\Q(i, \sqrt{11})\) | None | \(0\) | \(-4\) | \(-4\) | \(0\) | \(q+(-1-\beta _{1})q^{3}+(-1+2\beta _{1})q^{5}+(-\beta _{2}+\cdots)q^{7}+\cdots\) |
220.2.k.b | $8$ | $1.757$ | 8.0.303595776.1 | \(\Q(\sqrt{-11}) \) | \(0\) | \(2\) | \(0\) | \(0\) | \(q-\beta _{1}q^{3}+(\beta _{2}+\beta _{6})q^{5}+(\beta _{1}-3\beta _{2}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(220, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(220, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 2}\)