Properties

Label 220.2.k
Level 220220
Weight 22
Character orbit 220.k
Rep. character χ220(153,)\chi_{220}(153,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 1212
Newform subspaces 22
Sturm bound 7272
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 220=22511 220 = 2^{2} \cdot 5 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 220.k (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 55 55
Character field: Q(i)\Q(i)
Newform subspaces: 2 2
Sturm bound: 7272
Trace bound: 11
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(220,[χ])M_{2}(220, [\chi]).

Total New Old
Modular forms 84 12 72
Cusp forms 60 12 48
Eisenstein series 24 0 24

Trace form

12q2q34q54q156q2314q25+10q2716q31+22q33+34q37+26q4528q4736q5322q5538q674q71+60q7544q77++54q97+O(q100) 12 q - 2 q^{3} - 4 q^{5} - 4 q^{15} - 6 q^{23} - 14 q^{25} + 10 q^{27} - 16 q^{31} + 22 q^{33} + 34 q^{37} + 26 q^{45} - 28 q^{47} - 36 q^{53} - 22 q^{55} - 38 q^{67} - 4 q^{71} + 60 q^{75} - 44 q^{77}+ \cdots + 54 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(220,[χ])S_{2}^{\mathrm{new}}(220, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
220.2.k.a 220.k 55.e 44 1.7571.757 Q(i,11)\Q(i, \sqrt{11}) None 220.2.k.a 00 4-4 4-4 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(1β1)q3+(1+2β1)q5+(β2+)q7+q+(-1-\beta _{1})q^{3}+(-1+2\beta _{1})q^{5}+(-\beta _{2}+\cdots)q^{7}+\cdots
220.2.k.b 220.k 55.e 88 1.7571.757 8.0.303595776.1 Q(11)\Q(\sqrt{-11}) 220.2.k.b 00 22 00 00 U(1)[D4]\mathrm{U}(1)[D_{4}] qβ1q3+(β2+β6)q5+(β13β2+)q9+q-\beta _{1}q^{3}+(\beta _{2}+\beta _{6})q^{5}+(\beta _{1}-3\beta _{2}+\cdots)q^{9}+\cdots

Decomposition of S2old(220,[χ])S_{2}^{\mathrm{old}}(220, [\chi]) into lower level spaces

S2old(220,[χ]) S_{2}^{\mathrm{old}}(220, [\chi]) \simeq S2new(55,[χ])S_{2}^{\mathrm{new}}(55, [\chi])3^{\oplus 3}\oplusS2new(110,[χ])S_{2}^{\mathrm{new}}(110, [\chi])2^{\oplus 2}