Defining parameters
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.m (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(220, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 168 | 16 | 152 |
Cusp forms | 120 | 16 | 104 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(220, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
220.2.m.a | $8$ | $1.757$ | 8.0.26265625.1 | None | \(0\) | \(-1\) | \(2\) | \(1\) | \(q+(-\beta _{1}-\beta _{7})q^{3}+\beta _{2}q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots\) |
220.2.m.b | $8$ | $1.757$ | 8.0.159390625.1 | None | \(0\) | \(5\) | \(-2\) | \(-1\) | \(q+(1-\beta _{3}+\beta _{4})q^{3}+(-1+\beta _{2}+\beta _{3}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(220, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(220, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 2}\)