Properties

Label 220.2.m
Level 220220
Weight 22
Character orbit 220.m
Rep. character χ220(81,)\chi_{220}(81,\cdot)
Character field Q(ζ5)\Q(\zeta_{5})
Dimension 1616
Newform subspaces 22
Sturm bound 7272
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 220=22511 220 = 2^{2} \cdot 5 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 220.m (of order 55 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 11 11
Character field: Q(ζ5)\Q(\zeta_{5})
Newform subspaces: 2 2
Sturm bound: 7272
Trace bound: 33
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(220,[χ])M_{2}(220, [\chi]).

Total New Old
Modular forms 168 16 152
Cusp forms 120 16 104
Eisenstein series 48 0 48

Trace form

16q+4q3+6q9+10q11+10q13+6q154q1714q1932q234q258q27+2q29+20q3114q33+8q35+20q37+10q39+12q4112q43++40q99+O(q100) 16 q + 4 q^{3} + 6 q^{9} + 10 q^{11} + 10 q^{13} + 6 q^{15} - 4 q^{17} - 14 q^{19} - 32 q^{23} - 4 q^{25} - 8 q^{27} + 2 q^{29} + 20 q^{31} - 14 q^{33} + 8 q^{35} + 20 q^{37} + 10 q^{39} + 12 q^{41} - 12 q^{43}+ \cdots + 40 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(220,[χ])S_{2}^{\mathrm{new}}(220, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
220.2.m.a 220.m 11.c 88 1.7571.757 8.0.26265625.1 None 220.2.m.a 00 1-1 22 11 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(β1β7)q3+β2q5+(1+β1+)q7+q+(-\beta _{1}-\beta _{7})q^{3}+\beta _{2}q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots
220.2.m.b 220.m 11.c 88 1.7571.757 8.0.159390625.1 None 220.2.m.b 00 55 2-2 1-1 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(1β3+β4)q3+(1+β2+β3+)q5+q+(1-\beta _{3}+\beta _{4})q^{3}+(-1+\beta _{2}+\beta _{3}+\cdots)q^{5}+\cdots

Decomposition of S2old(220,[χ])S_{2}^{\mathrm{old}}(220, [\chi]) into lower level spaces

S2old(220,[χ]) S_{2}^{\mathrm{old}}(220, [\chi]) \simeq S2new(22,[χ])S_{2}^{\mathrm{new}}(22, [\chi])4^{\oplus 4}\oplusS2new(44,[χ])S_{2}^{\mathrm{new}}(44, [\chi])2^{\oplus 2}\oplusS2new(55,[χ])S_{2}^{\mathrm{new}}(55, [\chi])3^{\oplus 3}\oplusS2new(110,[χ])S_{2}^{\mathrm{new}}(110, [\chi])2^{\oplus 2}