Properties

Label 220.3.c
Level $220$
Weight $3$
Character orbit 220.c
Rep. character $\chi_{220}(111,\cdot)$
Character field $\Q$
Dimension $40$
Newform subspaces $1$
Sturm bound $108$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(108\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(220, [\chi])\).

Total New Old
Modular forms 76 40 36
Cusp forms 68 40 28
Eisenstein series 8 0 8

Trace form

\( 40 q - 4 q^{4} + 36 q^{8} - 120 q^{9} + 20 q^{10} - 80 q^{12} + 32 q^{13} - 56 q^{14} + 40 q^{16} + 16 q^{18} - 20 q^{20} - 80 q^{21} + 104 q^{24} + 200 q^{25} + 100 q^{26} + 60 q^{28} - 48 q^{29} - 280 q^{32}+ \cdots + 680 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(220, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
220.3.c.a 220.c 4.b $40$ $5.995$ None 220.3.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{3}^{\mathrm{old}}(220, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(220, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 2}\)