Properties

Label 220.6.b
Level 220220
Weight 66
Character orbit 220.b
Rep. character χ220(89,)\chi_{220}(89,\cdot)
Character field Q\Q
Dimension 2626
Newform subspaces 22
Sturm bound 216216
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 220=22511 220 = 2^{2} \cdot 5 \cdot 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 220.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 5 5
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 216216
Trace bound: 11
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M6(220,[χ])M_{6}(220, [\chi]).

Total New Old
Modular forms 186 26 160
Cusp forms 174 26 148
Eisenstein series 12 0 12

Trace form

26q31q52748q9+242q11+1631q152440q19+2908q21+1913q2519904q294306q31+23438q35+2784q391648q41+33380q4560234q4972756q51++56144q99+O(q100) 26 q - 31 q^{5} - 2748 q^{9} + 242 q^{11} + 1631 q^{15} - 2440 q^{19} + 2908 q^{21} + 1913 q^{25} - 19904 q^{29} - 4306 q^{31} + 23438 q^{35} + 2784 q^{39} - 1648 q^{41} + 33380 q^{45} - 60234 q^{49} - 72756 q^{51}+ \cdots + 56144 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(220,[χ])S_{6}^{\mathrm{new}}(220, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
220.6.b.a 220.b 5.b 1212 35.28435.284 Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots) None 220.6.b.a 00 00 1313 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q3+(1+β4)q5+β8q7+(134+)q9+q+\beta _{1}q^{3}+(1+\beta _{4})q^{5}+\beta _{8}q^{7}+(-134+\cdots)q^{9}+\cdots
220.6.b.b 220.b 5.b 1414 35.28435.284 Q[x]/(x14+)\mathbb{Q}[x]/(x^{14} + \cdots) None 220.6.b.b 00 00 44-44 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q3+(3+β4)q5+(β1β3+)q7+q+\beta _{1}q^{3}+(-3+\beta _{4})q^{5}+(-\beta _{1}-\beta _{3}+\cdots)q^{7}+\cdots

Decomposition of S6old(220,[χ])S_{6}^{\mathrm{old}}(220, [\chi]) into lower level spaces

S6old(220,[χ]) S_{6}^{\mathrm{old}}(220, [\chi]) \simeq S6new(5,[χ])S_{6}^{\mathrm{new}}(5, [\chi])6^{\oplus 6}\oplusS6new(10,[χ])S_{6}^{\mathrm{new}}(10, [\chi])4^{\oplus 4}\oplusS6new(20,[χ])S_{6}^{\mathrm{new}}(20, [\chi])2^{\oplus 2}\oplusS6new(55,[χ])S_{6}^{\mathrm{new}}(55, [\chi])3^{\oplus 3}\oplusS6new(110,[χ])S_{6}^{\mathrm{new}}(110, [\chi])2^{\oplus 2}