Defining parameters
Level: | \( N \) | \(=\) | \( 2200 = 2^{3} \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2200.bp (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 275 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(360\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2200, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 0 | 64 |
Cusp forms | 32 | 0 | 32 |
Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 0 | 0 |
Decomposition of \(S_{1}^{\mathrm{old}}(2200, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2200, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1100, [\chi])\)\(^{\oplus 2}\)