Properties

Label 224.2.u
Level $224$
Weight $2$
Character orbit 224.u
Rep. character $\chi_{224}(29,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $96$
Newform subspaces $3$
Sturm bound $64$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 224.u (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 32 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 3 \)
Sturm bound: \(64\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(224, [\chi])\).

Total New Old
Modular forms 136 96 40
Cusp forms 120 96 24
Eisenstein series 16 0 16

Trace form

\( 96 q - 16 q^{10} - 32 q^{12} - 20 q^{16} - 20 q^{18} - 28 q^{22} - 8 q^{23} - 16 q^{24} + 40 q^{26} - 48 q^{27} + 40 q^{30} + 40 q^{32} + 40 q^{34} + 16 q^{36} - 56 q^{38} - 48 q^{39} + 40 q^{40} - 8 q^{43}+ \cdots - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(224, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
224.2.u.a 224.u 32.g $4$ $1.789$ \(\Q(\zeta_{8})\) None 224.2.u.a \(-4\) \(-4\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+(-1+\zeta_{8}^{2})q^{2}+(-1-\zeta_{8}-\zeta_{8}^{2}+\cdots)q^{3}+\cdots\)
224.2.u.b 224.u 32.g $40$ $1.789$ None 224.2.u.b \(4\) \(4\) \(8\) \(0\) $\mathrm{SU}(2)[C_{8}]$
224.2.u.c 224.u 32.g $52$ $1.789$ None 224.2.u.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$

Decomposition of \(S_{2}^{\mathrm{old}}(224, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(224, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 2}\)