Defining parameters
Level: | \( N \) | \(=\) | \( 224 = 2^{5} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 224.u (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 32 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(224, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 136 | 96 | 40 |
Cusp forms | 120 | 96 | 24 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(224, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
224.2.u.a | $4$ | $1.789$ | \(\Q(\zeta_{8})\) | None | \(-4\) | \(-4\) | \(-8\) | \(0\) | \(q+(-1+\zeta_{8}^{2})q^{2}+(-1-\zeta_{8}-\zeta_{8}^{2}+\cdots)q^{3}+\cdots\) |
224.2.u.b | $40$ | $1.789$ | None | \(4\) | \(4\) | \(8\) | \(0\) | ||
224.2.u.c | $52$ | $1.789$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(224, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(224, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 2}\)