Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M4(Γ0(224)).
|
Total |
New |
Old |
Modular forms
| 104 |
18 |
86 |
Cusp forms
| 88 |
18 |
70 |
Eisenstein series
| 16 |
0 |
16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 7 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 29 | 5 | 24 | | 25 | 5 | 20 | | 4 | 0 | 4 |
+ | − | − | | 23 | 3 | 20 | | 19 | 3 | 16 | | 4 | 0 | 4 |
− | + | − | | 25 | 4 | 21 | | 21 | 4 | 17 | | 4 | 0 | 4 |
− | − | + | | 27 | 6 | 21 | | 23 | 6 | 17 | | 4 | 0 | 4 |
Plus space | + | | 56 | 11 | 45 | | 48 | 11 | 37 | | 8 | 0 | 8 |
Minus space | − | | 48 | 7 | 41 | | 40 | 7 | 33 | | 8 | 0 | 8 |
Decomposition of S4new(Γ0(224)) into newform subspaces
Decomposition of S4old(Γ0(224)) into lower level spaces