Properties

Label 2240.2.dy
Level $2240$
Weight $2$
Character orbit 2240.dy
Rep. character $\chi_{2240}(251,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $2048$
Sturm bound $768$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.dy (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 448 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2240, [\chi])\).

Total New Old
Modular forms 3104 2048 1056
Cusp forms 3040 2048 992
Eisenstein series 64 0 64

Trace form

\( 2048 q + 16 q^{22} - 80 q^{28} - 80 q^{42} + 16 q^{44} - 192 q^{64} - 160 q^{67} + 128 q^{71} + 16 q^{74} - 192 q^{78} + 112 q^{84} + 272 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2240, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2240, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(448, [\chi])\)\(^{\oplus 2}\)