Properties

Label 2240.2.g
Level $2240$
Weight $2$
Character orbit 2240.g
Rep. character $\chi_{2240}(449,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $16$
Sturm bound $768$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(768\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(3\), \(11\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2240, [\chi])\).

Total New Old
Modular forms 408 72 336
Cusp forms 360 72 288
Eisenstein series 48 0 48

Trace form

\( 72 q - 72 q^{9} + O(q^{10}) \) \( 72 q - 72 q^{9} - 8 q^{25} + 16 q^{41} - 48 q^{45} - 72 q^{49} - 32 q^{61} - 16 q^{65} + 128 q^{69} + 72 q^{81} + 16 q^{89} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2240, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2240.2.g.a 2240.g 5.b $2$ $17.886$ \(\Q(\sqrt{-1}) \) None 280.2.g.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(i-2)q^{5}-i q^{7}+2 q^{9}+\cdots\)
2240.2.g.b 2240.g 5.b $2$ $17.886$ \(\Q(\sqrt{-1}) \) None 280.2.g.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(-i-2)q^{5}-i q^{7}+2 q^{9}+\cdots\)
2240.2.g.c 2240.g 5.b $2$ $17.886$ \(\Q(\sqrt{-1}) \) None 140.2.e.b \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2 i-1)q^{5}+i q^{7}+3 q^{9}-4 i q^{13}+\cdots\)
2240.2.g.d 2240.g 5.b $2$ $17.886$ \(\Q(\sqrt{-1}) \) None 140.2.e.b \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2 i-1)q^{5}-i q^{7}+3 q^{9}-4 i q^{13}+\cdots\)
2240.2.g.e 2240.g 5.b $2$ $17.886$ \(\Q(\sqrt{-1}) \) None 140.2.e.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+(i+2)q^{5}+i q^{7}-6 q^{9}+\cdots\)
2240.2.g.f 2240.g 5.b $2$ $17.886$ \(\Q(\sqrt{-1}) \) None 140.2.e.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+(-i+2)q^{5}+i q^{7}-6 q^{9}+\cdots\)
2240.2.g.g 2240.g 5.b $2$ $17.886$ \(\Q(\sqrt{-1}) \) None 35.2.b.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(-i+2)q^{5}-i q^{7}+2 q^{9}+\cdots\)
2240.2.g.h 2240.g 5.b $2$ $17.886$ \(\Q(\sqrt{-1}) \) None 35.2.b.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+(i+2)q^{5}-i q^{7}+2 q^{9}+\cdots\)
2240.2.g.i 2240.g 5.b $4$ $17.886$ \(\Q(i, \sqrt{6})\) None 70.2.c.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{3})q^{3}+(-1+\beta _{1}+\beta _{2})q^{5}+\cdots\)
2240.2.g.j 2240.g 5.b $4$ $17.886$ \(\Q(i, \sqrt{6})\) None 70.2.c.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{3})q^{3}+(-1-\beta _{2}-\beta _{3})q^{5}+\cdots\)
2240.2.g.k 2240.g 5.b $4$ $17.886$ \(\Q(i, \sqrt{5})\) None 1120.2.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}-\beta _{2}q^{5}+\beta _{1}q^{7}+2q^{9}+\beta _{3}q^{11}+\cdots\)
2240.2.g.l 2240.g 5.b $6$ $17.886$ 6.0.5161984.1 None 280.2.g.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{3}+(-\beta _{2}-\beta _{5})q^{5}-\beta _{4}q^{7}+\cdots\)
2240.2.g.m 2240.g 5.b $6$ $17.886$ 6.0.5161984.1 None 280.2.g.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{3}+(-\beta _{1}+\beta _{5})q^{5}-\beta _{4}q^{7}+\cdots\)
2240.2.g.n 2240.g 5.b $10$ $17.886$ 10.0.\(\cdots\).1 None 1120.2.g.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}-\beta _{4}q^{5}-\beta _{5}q^{7}+(-1-\beta _{3}+\cdots)q^{9}+\cdots\)
2240.2.g.o 2240.g 5.b $10$ $17.886$ 10.0.\(\cdots\).1 None 1120.2.g.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+\beta _{6}q^{5}-\beta _{5}q^{7}+(-1-\beta _{3}+\cdots)q^{9}+\cdots\)
2240.2.g.p 2240.g 5.b $12$ $17.886$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1120.2.g.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{9}q^{3}-\beta _{10}q^{5}-\beta _{5}q^{7}+(-1-\beta _{3}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2240, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1120, [\chi])\)\(^{\oplus 2}\)