Defining parameters
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(2\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(225, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 102 | 24 | 78 |
Cusp forms | 78 | 22 | 56 |
Eisenstein series | 24 | 2 | 22 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(225, [\chi])\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(225, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(225, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)