Properties

Label 225.4.b
Level $225$
Weight $4$
Character orbit 225.b
Rep. character $\chi_{225}(199,\cdot)$
Character field $\Q$
Dimension $22$
Newform subspaces $9$
Sturm bound $120$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(120\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(2\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(225, [\chi])\).

Total New Old
Modular forms 102 24 78
Cusp forms 78 22 56
Eisenstein series 24 2 22

Trace form

\( 22 q - 98 q^{4} - 90 q^{11} + 288 q^{14} + 314 q^{16} - 154 q^{19} + 516 q^{26} + 708 q^{29} + 396 q^{31} + 194 q^{34} - 1326 q^{41} + 402 q^{44} - 324 q^{46} - 1742 q^{49} + 660 q^{56} + 936 q^{59} + 268 q^{61}+ \cdots + 4160 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(225, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
225.4.b.a 225.b 5.b $2$ $13.275$ \(\Q(\sqrt{-1}) \) None 45.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}-17 q^{4}+6\beta q^{7}-9\beta q^{8}+\cdots\)
225.4.b.b 225.b 5.b $2$ $13.275$ \(\Q(\sqrt{-1}) \) None 45.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}-17 q^{4}-6\beta q^{7}-9\beta q^{8}+\cdots\)
225.4.b.c 225.b 5.b $2$ $13.275$ \(\Q(\sqrt{-1}) \) None 5.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta q^{2}-8 q^{4}+3\beta q^{7}-32 q^{11}+\cdots\)
225.4.b.d 225.b 5.b $2$ $13.275$ \(\Q(\sqrt{-1}) \) None 15.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{2}-q^{4}-20 i q^{7}+21 i q^{8}+\cdots\)
225.4.b.e 225.b 5.b $2$ $13.275$ \(\Q(\sqrt{-1}) \) None 15.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+7 q^{4}+24 i q^{7}+15 i q^{8}+\cdots\)
225.4.b.f 225.b 5.b $2$ $13.275$ \(\Q(\sqrt{-1}) \) None 25.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+7 q^{4}-6 i q^{7}+15 i q^{8}+\cdots\)
225.4.b.g 225.b 5.b $2$ $13.275$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-3}) \) 9.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+8 q^{4}+2\beta q^{7}+7\beta q^{13}+64 q^{16}+\cdots\)
225.4.b.h 225.b 5.b $4$ $13.275$ \(\Q(i, \sqrt{19})\) None 75.4.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+\beta _{3})q^{2}+(-12+2\beta _{2})q^{4}+\cdots\)
225.4.b.i 225.b 5.b $4$ $13.275$ \(\Q(i, \sqrt{10})\) None 225.4.a.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}-2q^{4}+3\beta _{1}q^{7}-6\beta _{2}q^{8}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(225, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(225, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)