Defining parameters
Level: | \( N \) | \(=\) | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 225.m (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(225, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 376 | 152 | 224 |
Cusp forms | 344 | 144 | 200 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(225, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
225.4.m.a | $24$ | $13.275$ | None | \(5\) | \(0\) | \(-15\) | \(0\) | ||
225.4.m.b | $56$ | $13.275$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
225.4.m.c | $64$ | $13.275$ | None | \(0\) | \(0\) | \(6\) | \(0\) |
Decomposition of \(S_{4}^{\mathrm{old}}(225, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(225, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)