Defining parameters
Level: | \( N \) | \(=\) | \( 2254 = 2 \cdot 7^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2254.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 29 \) | ||
Sturm bound: | \(1344\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(2254))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1024 | 226 | 798 |
Cusp forms | 992 | 226 | 766 |
Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(23\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(29\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(25\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(28\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(31\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(27\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(31\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(29\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(26\) |
Plus space | \(+\) | \(120\) | ||
Minus space | \(-\) | \(106\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(2254))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(2254))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(2254)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(322))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(1127))\)\(^{\oplus 2}\)