Properties

Label 2254.4.a
Level $2254$
Weight $4$
Character orbit 2254.a
Rep. character $\chi_{2254}(1,\cdot)$
Character field $\Q$
Dimension $226$
Newform subspaces $29$
Sturm bound $1344$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 29 \)
Sturm bound: \(1344\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(2254))\).

Total New Old
Modular forms 1024 226 798
Cusp forms 992 226 766
Eisenstein series 32 0 32

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(23\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(29\)
\(+\)\(+\)\(-\)\(-\)\(25\)
\(+\)\(-\)\(+\)\(-\)\(28\)
\(+\)\(-\)\(-\)\(+\)\(31\)
\(-\)\(+\)\(+\)\(-\)\(27\)
\(-\)\(+\)\(-\)\(+\)\(31\)
\(-\)\(-\)\(+\)\(+\)\(29\)
\(-\)\(-\)\(-\)\(-\)\(26\)
Plus space\(+\)\(120\)
Minus space\(-\)\(106\)

Trace form

\( 226 q + 4 q^{3} + 904 q^{4} - 10 q^{5} - 32 q^{6} + 1998 q^{9} + 28 q^{10} - 66 q^{11} + 16 q^{12} + 36 q^{13} - 4 q^{15} + 3616 q^{16} - 172 q^{17} - 128 q^{18} + 142 q^{19} - 40 q^{20} + 260 q^{22} - 128 q^{24}+ \cdots + 1978 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(2254))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 23
2254.4.a.a 2254.a 1.a $1$ $132.990$ \(\Q\) None 46.4.a.a \(-2\) \(1\) \(10\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+q^{3}+4q^{4}+10q^{5}-2q^{6}+\cdots\)
2254.4.a.b 2254.a 1.a $1$ $132.990$ \(\Q\) None 46.4.a.b \(2\) \(9\) \(20\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+9q^{3}+4q^{4}+20q^{5}+18q^{6}+\cdots\)
2254.4.a.c 2254.a 1.a $2$ $132.990$ \(\Q(\sqrt{73}) \) None 322.4.a.b \(-4\) \(-9\) \(8\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-4-\beta )q^{3}+4q^{4}+(6-4\beta )q^{5}+\cdots\)
2254.4.a.d 2254.a 1.a $2$ $132.990$ \(\Q(\sqrt{41}) \) None 46.4.a.c \(-4\) \(1\) \(-10\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1+3\beta )q^{3}+4q^{4}+(-4+\cdots)q^{5}+\cdots\)
2254.4.a.e 2254.a 1.a $2$ $132.990$ \(\Q(\sqrt{2}) \) None 322.4.a.a \(-4\) \(4\) \(-16\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(2+3\beta )q^{3}+4q^{4}+(-8-3\beta )q^{5}+\cdots\)
2254.4.a.f 2254.a 1.a $2$ $132.990$ \(\Q(\sqrt{73}) \) None 46.4.a.d \(4\) \(-3\) \(-10\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1-\beta )q^{3}+4q^{4}+(-6+\cdots)q^{5}+\cdots\)
2254.4.a.g 2254.a 1.a $2$ $132.990$ \(\Q(\sqrt{57}) \) None 322.4.a.c \(4\) \(-1\) \(18\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-\beta q^{3}+4q^{4}+(8+2\beta )q^{5}+\cdots\)
2254.4.a.h 2254.a 1.a $3$ $132.990$ 3.3.15384.1 None 322.4.a.d \(-6\) \(3\) \(-8\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1-\beta _{1})q^{3}+4q^{4}+(-3-2\beta _{1}+\cdots)q^{5}+\cdots\)
2254.4.a.i 2254.a 1.a $3$ $132.990$ 3.3.3368.1 None 322.4.a.e \(6\) \(7\) \(8\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(2+\beta _{2})q^{3}+4q^{4}+(3-\beta _{1}+\cdots)q^{5}+\cdots\)
2254.4.a.j 2254.a 1.a $4$ $132.990$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 322.4.a.f \(-8\) \(1\) \(2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+\beta _{1}q^{3}+4q^{4}+\beta _{2}q^{5}-2\beta _{1}q^{6}+\cdots\)
2254.4.a.k 2254.a 1.a $5$ $132.990$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 322.4.a.g \(-10\) \(9\) \(2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(2-\beta _{4})q^{3}+4q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
2254.4.a.l 2254.a 1.a $5$ $132.990$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 322.4.a.h \(10\) \(-5\) \(-22\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1+\beta _{1})q^{3}+4q^{4}+(-4+\cdots)q^{5}+\cdots\)
2254.4.a.m 2254.a 1.a $6$ $132.990$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 322.4.a.i \(12\) \(-13\) \(-12\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-2-\beta _{1})q^{3}+4q^{4}+(-2+\cdots)q^{5}+\cdots\)
2254.4.a.n 2254.a 1.a $6$ $132.990$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 2254.4.a.n \(12\) \(0\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta _{5}q^{3}+4q^{4}-\beta _{3}q^{5}+2\beta _{5}q^{6}+\cdots\)
2254.4.a.o 2254.a 1.a $8$ $132.990$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 2254.4.a.o \(-16\) \(0\) \(0\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+\beta _{1}q^{3}+4q^{4}+\beta _{6}q^{5}-2\beta _{1}q^{6}+\cdots\)
2254.4.a.p 2254.a 1.a $8$ $132.990$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 2254.4.a.p \(16\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta _{1}q^{3}+4q^{4}+(\beta _{1}+\beta _{5})q^{5}+\cdots\)
2254.4.a.q 2254.a 1.a $10$ $132.990$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 2254.4.a.q \(-20\) \(0\) \(0\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+\beta _{1}q^{3}+4q^{4}+(-\beta _{1}+\beta _{7}+\cdots)q^{5}+\cdots\)
2254.4.a.r 2254.a 1.a $11$ $132.990$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 322.4.e.d \(-22\) \(0\) \(-23\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-\beta _{1}q^{3}+4q^{4}+(-2-\beta _{2}+\cdots)q^{5}+\cdots\)
2254.4.a.s 2254.a 1.a $11$ $132.990$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 322.4.e.c \(-22\) \(0\) \(-17\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+\beta _{1}q^{3}+4q^{4}+(-2+\beta _{3}+\cdots)q^{5}+\cdots\)
2254.4.a.t 2254.a 1.a $11$ $132.990$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 322.4.e.c \(-22\) \(0\) \(17\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-\beta _{1}q^{3}+4q^{4}+(2-\beta _{3})q^{5}+\cdots\)
2254.4.a.u 2254.a 1.a $11$ $132.990$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 322.4.e.d \(-22\) \(0\) \(23\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+\beta _{1}q^{3}+4q^{4}+(2+\beta _{2})q^{5}+\cdots\)
2254.4.a.v 2254.a 1.a $11$ $132.990$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 322.4.e.a \(22\) \(-18\) \(-33\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-2+\beta _{1})q^{3}+4q^{4}+(-3+\cdots)q^{5}+\cdots\)
2254.4.a.w 2254.a 1.a $11$ $132.990$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 322.4.e.b \(22\) \(-6\) \(-27\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1+\beta _{1})q^{3}+4q^{4}+(-2+\cdots)q^{5}+\cdots\)
2254.4.a.x 2254.a 1.a $11$ $132.990$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 322.4.e.b \(22\) \(6\) \(27\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(1-\beta _{1})q^{3}+4q^{4}+(2+\beta _{4}+\cdots)q^{5}+\cdots\)
2254.4.a.y 2254.a 1.a $11$ $132.990$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 322.4.e.a \(22\) \(18\) \(33\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(2-\beta _{1})q^{3}+4q^{4}+(3+\beta _{1}+\cdots)q^{5}+\cdots\)
2254.4.a.z 2254.a 1.a $14$ $132.990$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 2254.4.a.z \(-28\) \(0\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+\beta _{1}q^{3}+4q^{4}+(-\beta _{1}-\beta _{11}+\cdots)q^{5}+\cdots\)
2254.4.a.ba 2254.a 1.a $16$ $132.990$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 2254.4.a.ba \(32\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta _{1}q^{3}+4q^{4}+(-\beta _{1}-\beta _{10}+\cdots)q^{5}+\cdots\)
2254.4.a.bb 2254.a 1.a $18$ $132.990$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 2254.4.a.bb \(-36\) \(0\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+\beta _{1}q^{3}+4q^{4}+(\beta _{1}-\beta _{11}+\cdots)q^{5}+\cdots\)
2254.4.a.bc 2254.a 1.a $20$ $132.990$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 2254.4.a.bc \(40\) \(0\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta _{1}q^{3}+4q^{4}+(\beta _{1}+\beta _{12}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(2254))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(2254)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(322))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(1127))\)\(^{\oplus 2}\)