Properties

Label 2268.1.bd
Level $2268$
Weight $1$
Character orbit 2268.bd
Rep. character $\chi_{2268}(1405,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $2$
Sturm bound $432$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2268.bd (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(432\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2268, [\chi])\).

Total New Old
Modular forms 82 4 78
Cusp forms 10 4 6
Eisenstein series 72 0 72

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - q^{7} + O(q^{10}) \) \( 4 q - q^{7} - 3 q^{13} - 2 q^{25} + q^{37} - 2 q^{43} + q^{49} + 2 q^{67} + 2 q^{79} + 3 q^{91} - 3 q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(2268, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2268.1.bd.a 2268.bd 63.t $2$ $1.132$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-3}) \) None 252.1.z.a \(0\) \(0\) \(0\) \(-2\) \(q-q^{7}+(-1+\zeta_{6}^{2})q^{13}+(-1+\zeta_{6}^{2}+\cdots)q^{19}+\cdots\)
2268.1.bd.b 2268.bd 63.t $2$ $1.132$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-3}) \) None 756.1.z.a \(0\) \(0\) \(0\) \(1\) \(q+\zeta_{6}q^{7}+(1-\zeta_{6}^{2})q^{19}-\zeta_{6}q^{25}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2268, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2268, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(567, [\chi])\)\(^{\oplus 3}\)