Properties

Label 2268.2.x
Level 22682268
Weight 22
Character orbit 2268.x
Rep. character χ2268(377,)\chi_{2268}(377,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 6464
Newform subspaces 1111
Sturm bound 864864
Trace bound 2525

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2268=22347 2268 = 2^{2} \cdot 3^{4} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2268.x (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 63 63
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 11 11
Sturm bound: 864864
Trace bound: 2525
Distinguishing TpT_p: 55, 1111, 1313

Dimensions

The following table gives the dimensions of various subspaces of M2(2268,[χ])M_{2}(2268, [\chi]).

Total New Old
Modular forms 936 64 872
Cusp forms 792 64 728
Eisenstein series 144 0 144

Trace form

64q+5q732q2520q3720q43+7q49+2q6782q7912q85+18q91+O(q100) 64 q + 5 q^{7} - 32 q^{25} - 20 q^{37} - 20 q^{43} + 7 q^{49} + 2 q^{67} - 82 q^{79} - 12 q^{85} + 18 q^{91}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(2268,[χ])S_{2}^{\mathrm{new}}(2268, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
2268.2.x.a 2268.x 63.o 22 18.11018.110 Q(3)\Q(\sqrt{-3}) None 756.2.f.a 00 00 3-3 5-5 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q3ζ6q5+(3+ζ6)q7+(33ζ6)q11+q-3\zeta_{6}q^{5}+(-3+\zeta_{6})q^{7}+(-3-3\zeta_{6})q^{11}+\cdots
2268.2.x.b 2268.x 63.o 22 18.11018.110 Q(3)\Q(\sqrt{-3}) None 756.2.f.a 00 00 3-3 11 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q3ζ6q5+(1+3ζ6)q7+(3+3ζ6)q11+q-3\zeta_{6}q^{5}+(-1+3\zeta_{6})q^{7}+(3+3\zeta_{6})q^{11}+\cdots
2268.2.x.c 2268.x 63.o 22 18.11018.110 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 84.2.f.a 00 00 00 5-5 U(1)[D6]\mathrm{U}(1)[D_{6}] q+(3+ζ6)q7+(8+4ζ6)q13+q+(-3+\zeta_{6})q^{7}+(-8+4\zeta_{6})q^{13}+\cdots
2268.2.x.d 2268.x 63.o 22 18.11018.110 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 756.2.f.b 00 00 00 11 U(1)[D6]\mathrm{U}(1)[D_{6}] q+(23ζ6)q7+(2ζ6)q13+(5+)q19+q+(2-3\zeta_{6})q^{7}+(2-\zeta_{6})q^{13}+(-5+\cdots)q^{19}+\cdots
2268.2.x.e 2268.x 63.o 22 18.11018.110 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 84.2.f.a 00 00 00 11 U(1)[D6]\mathrm{U}(1)[D_{6}] q+(1+3ζ6)q7+(84ζ6)q13+(2+)q19+q+(-1+3\zeta_{6})q^{7}+(8-4\zeta_{6})q^{13}+(-2+\cdots)q^{19}+\cdots
2268.2.x.f 2268.x 63.o 22 18.11018.110 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 756.2.f.b 00 00 00 44 U(1)[D6]\mathrm{U}(1)[D_{6}] q+(32ζ6)q7+(2+ζ6)q13+(5+)q19+q+(3-2\zeta_{6})q^{7}+(-2+\zeta_{6})q^{13}+(5+\cdots)q^{19}+\cdots
2268.2.x.g 2268.x 63.o 22 18.11018.110 Q(3)\Q(\sqrt{-3}) None 756.2.f.a 00 00 33 5-5 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+3ζ6q5+(3+ζ6)q7+(3+3ζ6)q11+q+3\zeta_{6}q^{5}+(-3+\zeta_{6})q^{7}+(3+3\zeta_{6})q^{11}+\cdots
2268.2.x.h 2268.x 63.o 22 18.11018.110 Q(3)\Q(\sqrt{-3}) None 756.2.f.a 00 00 33 11 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+3ζ6q5+(1+3ζ6)q7+(33ζ6)q11+q+3\zeta_{6}q^{5}+(-1+3\zeta_{6})q^{7}+(-3-3\zeta_{6})q^{11}+\cdots
2268.2.x.i 2268.x 63.o 88 18.11018.110 Q(ζ24)\Q(\zeta_{24}) None 252.2.f.a 00 00 00 44 SU(2)[C6]\mathrm{SU}(2)[C_{6}] qβ2q5+(β5β1+1)q7+(β7β3)q11+q-\beta_{2} q^{5}+(\beta_{5}-\beta_1+1)q^{7}+(-\beta_{7}-\beta_{3})q^{11}+\cdots
2268.2.x.j 2268.x 63.o 88 18.11018.110 Q(ζ24)\Q(\zeta_{24}) None 756.2.f.d 00 00 00 44 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(β4β2)q5+(β6+β1)q7+q+(\beta_{4}-\beta_{2})q^{5}+(-\beta_{6}+\beta_1)q^{7}+\cdots
2268.2.x.k 2268.x 63.o 3232 18.11018.110 None 2268.2.f.a 00 00 00 44 SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Decomposition of S2old(2268,[χ])S_{2}^{\mathrm{old}}(2268, [\chi]) into lower level spaces