Properties

Label 2268.2.x
Level $2268$
Weight $2$
Character orbit 2268.x
Rep. character $\chi_{2268}(377,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $64$
Newform subspaces $11$
Sturm bound $864$
Trace bound $25$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.x (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 11 \)
Sturm bound: \(864\)
Trace bound: \(25\)
Distinguishing \(T_p\): \(5\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2268, [\chi])\).

Total New Old
Modular forms 936 64 872
Cusp forms 792 64 728
Eisenstein series 144 0 144

Trace form

\( 64 q + 5 q^{7} - 32 q^{25} - 20 q^{37} - 20 q^{43} + 7 q^{49} + 2 q^{67} - 82 q^{79} - 12 q^{85} + 18 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2268, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2268.2.x.a 2268.x 63.o $2$ $18.110$ \(\Q(\sqrt{-3}) \) None 756.2.f.a \(0\) \(0\) \(-3\) \(-5\) $\mathrm{SU}(2)[C_{6}]$ \(q-3\zeta_{6}q^{5}+(-3+\zeta_{6})q^{7}+(-3-3\zeta_{6})q^{11}+\cdots\)
2268.2.x.b 2268.x 63.o $2$ $18.110$ \(\Q(\sqrt{-3}) \) None 756.2.f.a \(0\) \(0\) \(-3\) \(1\) $\mathrm{SU}(2)[C_{6}]$ \(q-3\zeta_{6}q^{5}+(-1+3\zeta_{6})q^{7}+(3+3\zeta_{6})q^{11}+\cdots\)
2268.2.x.c 2268.x 63.o $2$ $18.110$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 84.2.f.a \(0\) \(0\) \(0\) \(-5\) $\mathrm{U}(1)[D_{6}]$ \(q+(-3+\zeta_{6})q^{7}+(-8+4\zeta_{6})q^{13}+\cdots\)
2268.2.x.d 2268.x 63.o $2$ $18.110$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 756.2.f.b \(0\) \(0\) \(0\) \(1\) $\mathrm{U}(1)[D_{6}]$ \(q+(2-3\zeta_{6})q^{7}+(2-\zeta_{6})q^{13}+(-5+\cdots)q^{19}+\cdots\)
2268.2.x.e 2268.x 63.o $2$ $18.110$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 84.2.f.a \(0\) \(0\) \(0\) \(1\) $\mathrm{U}(1)[D_{6}]$ \(q+(-1+3\zeta_{6})q^{7}+(8-4\zeta_{6})q^{13}+(-2+\cdots)q^{19}+\cdots\)
2268.2.x.f 2268.x 63.o $2$ $18.110$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 756.2.f.b \(0\) \(0\) \(0\) \(4\) $\mathrm{U}(1)[D_{6}]$ \(q+(3-2\zeta_{6})q^{7}+(-2+\zeta_{6})q^{13}+(5+\cdots)q^{19}+\cdots\)
2268.2.x.g 2268.x 63.o $2$ $18.110$ \(\Q(\sqrt{-3}) \) None 756.2.f.a \(0\) \(0\) \(3\) \(-5\) $\mathrm{SU}(2)[C_{6}]$ \(q+3\zeta_{6}q^{5}+(-3+\zeta_{6})q^{7}+(3+3\zeta_{6})q^{11}+\cdots\)
2268.2.x.h 2268.x 63.o $2$ $18.110$ \(\Q(\sqrt{-3}) \) None 756.2.f.a \(0\) \(0\) \(3\) \(1\) $\mathrm{SU}(2)[C_{6}]$ \(q+3\zeta_{6}q^{5}+(-1+3\zeta_{6})q^{7}+(-3-3\zeta_{6})q^{11}+\cdots\)
2268.2.x.i 2268.x 63.o $8$ $18.110$ \(\Q(\zeta_{24})\) None 252.2.f.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta_{2} q^{5}+(\beta_{5}-\beta_1+1)q^{7}+(-\beta_{7}-\beta_{3})q^{11}+\cdots\)
2268.2.x.j 2268.x 63.o $8$ $18.110$ \(\Q(\zeta_{24})\) None 756.2.f.d \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta_{4}-\beta_{2})q^{5}+(-\beta_{6}+\beta_1)q^{7}+\cdots\)
2268.2.x.k 2268.x 63.o $32$ $18.110$ None 2268.2.f.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(2268, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2268, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(567, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1134, [\chi])\)\(^{\oplus 2}\)