Properties

Label 228.2.v
Level $228$
Weight $2$
Character orbit 228.v
Rep. character $\chi_{228}(23,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $216$
Newform subspaces $1$
Sturm bound $80$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 228 = 2^{2} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 228.v (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 228 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(80\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(228, [\chi])\).

Total New Old
Modular forms 264 264 0
Cusp forms 216 216 0
Eisenstein series 48 48 0

Trace form

\( 216 q - 18 q^{4} - 6 q^{6} - 18 q^{9} - 18 q^{10} - 3 q^{12} - 36 q^{13} - 6 q^{16} - 12 q^{18} - 30 q^{21} - 18 q^{24} - 24 q^{25} - 36 q^{28} + 12 q^{33} + 30 q^{34} - 66 q^{36} - 48 q^{37} - 42 q^{40}+ \cdots - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(228, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
228.2.v.a 228.v 228.v $216$ $1.821$ None 228.2.v.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$