Properties

Label 23.2.c
Level $23$
Weight $2$
Character orbit 23.c
Rep. character $\chi_{23}(2,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $10$
Newform subspaces $1$
Sturm bound $4$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 23.c (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 1 \)
Sturm bound: \(4\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(23, [\chi])\).

Total New Old
Modular forms 30 30 0
Cusp forms 10 10 0
Eisenstein series 20 20 0

Trace form

\( 10 q - 7 q^{2} - 7 q^{3} - 3 q^{4} - 3 q^{5} + 6 q^{6} - 5 q^{7} + 4 q^{8} - 2 q^{9} + q^{10} + 7 q^{11} + 12 q^{12} - 3 q^{13} + 9 q^{14} + 12 q^{15} + q^{16} - 10 q^{17} - 14 q^{18} + 2 q^{19} - 9 q^{20}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(23, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
23.2.c.a 23.c 23.c $10$ $0.184$ \(\Q(\zeta_{22})\) None 23.2.c.a \(-7\) \(-7\) \(-3\) \(-5\) $\mathrm{SU}(2)[C_{11}]$ \(q+(-\zeta_{22}+\zeta_{22}^{4}-\zeta_{22}^{5}+\zeta_{22}^{6}+\cdots)q^{2}+\cdots\)