Properties

Label 23.29
Level 23
Weight 29
Dimension 605
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 1276
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 23 \)
Weight: \( k \) = \( 29 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(1276\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{29}(\Gamma_1(23))\).

Total New Old
Modular forms 627 627 0
Cusp forms 605 605 0
Eisenstein series 22 22 0

Trace form

\( 605 q - 11 q^{2} - 11 q^{3} - 11 q^{4} - 11 q^{5} - 11 q^{6} - 11 q^{7} - 11 q^{8} - 11 q^{9} - 11 q^{10} - 11 q^{11} - 11 q^{12} - 11 q^{13} - 11 q^{14} - 34\!\cdots\!68 q^{15} + 58\!\cdots\!17 q^{16}+ \cdots - 35\!\cdots\!92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{29}^{\mathrm{new}}(\Gamma_1(23))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
23.29.b \(\chi_{23}(22, \cdot)\) 23.29.b.a 3 1
23.29.b.b 52
23.29.d \(\chi_{23}(5, \cdot)\) 23.29.d.a 550 10