Defining parameters
Level: | \( N \) | \(=\) | \( 2303 = 7^{2} \cdot 47 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2303.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 47 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2303, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 26 | 17 | 9 |
Cusp forms | 18 | 12 | 6 |
Eisenstein series | 8 | 5 | 3 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 12 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2303, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
2303.1.d.a | $1$ | $1.149$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-47}) \) | None | \(-1\) | \(-2\) | \(0\) | \(0\) | \(q-q^{2}-2q^{3}+2q^{6}+q^{8}+3q^{9}-q^{16}+\cdots\) |
2303.1.d.b | $1$ | $1.149$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-47}) \) | None | \(-1\) | \(2\) | \(0\) | \(0\) | \(q-q^{2}+2q^{3}-2q^{6}+q^{8}+3q^{9}-q^{16}+\cdots\) |
2303.1.d.c | $2$ | $1.149$ | \(\Q(\sqrt{5}) \) | $D_{5}$ | \(\Q(\sqrt{-47}) \) | None | \(-1\) | \(1\) | \(0\) | \(0\) | \(q-\beta q^{2}+(1-\beta )q^{3}+\beta q^{4}+q^{6}-q^{8}+\cdots\) |
2303.1.d.d | $4$ | $1.149$ | \(\Q(\zeta_{15})^+\) | $D_{15}$ | \(\Q(\sqrt{-47}) \) | None | \(1\) | \(-2\) | \(0\) | \(0\) | \(q+(1-\beta _{1}+\beta _{3})q^{2}+\beta _{3}q^{3}+(1-\beta _{2}+\cdots)q^{4}+\cdots\) |
2303.1.d.e | $4$ | $1.149$ | \(\Q(\zeta_{15})^+\) | $D_{15}$ | \(\Q(\sqrt{-47}) \) | None | \(1\) | \(2\) | \(0\) | \(0\) | \(q+(1-\beta _{1}+\beta _{3})q^{2}-\beta _{3}q^{3}+(1-\beta _{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(2303, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2303, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(47, [\chi])\)\(^{\oplus 3}\)