Properties

Label 2303.1.d
Level $2303$
Weight $1$
Character orbit 2303.d
Rep. character $\chi_{2303}(2255,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $5$
Sturm bound $224$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2303 = 7^{2} \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2303.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 47 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(224\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2303, [\chi])\).

Total New Old
Modular forms 26 17 9
Cusp forms 18 12 6
Eisenstein series 8 5 3

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 12 0 0 0

Trace form

\( 12 q - q^{2} + q^{3} + 11 q^{4} + 2 q^{6} - 2 q^{8} + 11 q^{9} - 2 q^{12} + 10 q^{16} + q^{17} - 8 q^{18} - q^{24} + 12 q^{25} + 2 q^{27} - 8 q^{32} + 2 q^{34} + 8 q^{36} - q^{37} - 2 q^{47} - q^{50}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2303, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2303.1.d.a 2303.d 47.b $1$ $1.149$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-47}) \) None 329.1.f.a \(-1\) \(-2\) \(0\) \(0\) \(q-q^{2}-2q^{3}+2q^{6}+q^{8}+3q^{9}-q^{16}+\cdots\)
2303.1.d.b 2303.d 47.b $1$ $1.149$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-47}) \) None 329.1.f.a \(-1\) \(2\) \(0\) \(0\) \(q-q^{2}+2q^{3}-2q^{6}+q^{8}+3q^{9}-q^{16}+\cdots\)
2303.1.d.c 2303.d 47.b $2$ $1.149$ \(\Q(\sqrt{5}) \) $D_{5}$ \(\Q(\sqrt{-47}) \) None 47.1.b.a \(-1\) \(1\) \(0\) \(0\) \(q-\beta q^{2}+(1-\beta )q^{3}+\beta q^{4}+q^{6}-q^{8}+\cdots\)
2303.1.d.d 2303.d 47.b $4$ $1.149$ \(\Q(\zeta_{15})^+\) $D_{15}$ \(\Q(\sqrt{-47}) \) None 329.1.f.b \(1\) \(-2\) \(0\) \(0\) \(q+(1-\beta _{1}+\beta _{3})q^{2}+\beta _{3}q^{3}+(1-\beta _{2}+\cdots)q^{4}+\cdots\)
2303.1.d.e 2303.d 47.b $4$ $1.149$ \(\Q(\zeta_{15})^+\) $D_{15}$ \(\Q(\sqrt{-47}) \) None 329.1.f.b \(1\) \(2\) \(0\) \(0\) \(q+(1-\beta _{1}+\beta _{3})q^{2}-\beta _{3}q^{3}+(1-\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2303, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2303, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(47, [\chi])\)\(^{\oplus 3}\)