Defining parameters
Level: | \( N \) | \(=\) | \( 2320 = 2^{4} \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2320.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(1440\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(2320, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1092 | 252 | 840 |
Cusp forms | 1068 | 252 | 816 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(2320, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(2320, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(2320, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(580, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1160, [\chi])\)\(^{\oplus 2}\)