Properties

Label 2320.4.d
Level $2320$
Weight $4$
Character orbit 2320.d
Rep. character $\chi_{2320}(929,\cdot)$
Character field $\Q$
Dimension $252$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2320.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2320, [\chi])\).

Total New Old
Modular forms 1092 252 840
Cusp forms 1068 252 816
Eisenstein series 24 0 24

Trace form

\( 252 q - 2268 q^{9} + 132 q^{11} + 12 q^{15} - 252 q^{19} - 636 q^{31} - 120 q^{35} + 624 q^{39} + 296 q^{41} - 12452 q^{49} - 744 q^{51} - 924 q^{55} - 688 q^{59} - 912 q^{61} + 464 q^{65} + 528 q^{69}+ \cdots - 6220 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2320, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2320, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2320, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(580, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1160, [\chi])\)\(^{\oplus 2}\)