Properties

Label 234.2.t.a.103.12
Level $234$
Weight $2$
Character 234.103
Analytic conductor $1.868$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,2,Mod(25,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 103.12
Character \(\chi\) \(=\) 234.103
Dual form 234.2.t.a.25.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.523143 + 1.65116i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.419378 - 0.242128i) q^{5} +(1.27863 + 1.16837i) q^{6} +(4.37722 - 2.52719i) q^{7} -1.00000i q^{8} +(-2.45264 + 1.72758i) q^{9} -0.484256 q^{10} +(-2.78126 + 1.60576i) q^{11} +(1.69152 + 0.372524i) q^{12} +(-0.722307 + 3.53246i) q^{13} +(2.52719 - 4.37722i) q^{14} +(0.180397 - 0.819127i) q^{15} +(-0.500000 - 0.866025i) q^{16} +4.20245 q^{17} +(-1.26026 + 2.72245i) q^{18} -3.21153i q^{19} +(-0.419378 + 0.242128i) q^{20} +(6.46270 + 5.90540i) q^{21} +(-1.60576 + 2.78126i) q^{22} +(-3.13608 + 5.43186i) q^{23} +(1.65116 - 0.523143i) q^{24} +(-2.38275 - 4.12704i) q^{25} +(1.14069 + 3.42035i) q^{26} +(-4.13559 - 3.14593i) q^{27} -5.05438i q^{28} +(-2.29627 - 3.97725i) q^{29} +(-0.253335 - 0.799583i) q^{30} +(-5.61504 - 3.24185i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(-4.10637 - 3.75226i) q^{33} +(3.63943 - 2.10123i) q^{34} -2.44761 q^{35} +(0.269808 + 2.98784i) q^{36} +2.08429i q^{37} +(-1.60576 - 2.78126i) q^{38} +(-6.21052 + 0.655337i) q^{39} +(-0.242128 + 0.419378i) q^{40} +(-9.57301 - 5.52698i) q^{41} +(8.54956 + 1.88288i) q^{42} +(4.73367 + 8.19896i) q^{43} +3.21153i q^{44} +(1.44688 - 0.130656i) q^{45} +6.27217i q^{46} +(-4.57369 + 2.64062i) q^{47} +(1.16837 - 1.27863i) q^{48} +(9.27337 - 16.0619i) q^{49} +(-4.12704 - 2.38275i) q^{50} +(2.19848 + 6.93891i) q^{51} +(2.69805 + 2.39177i) q^{52} +6.41990 q^{53} +(-5.15449 - 0.656660i) q^{54} +1.55520 q^{55} +(-2.52719 - 4.37722i) q^{56} +(5.30274 - 1.68009i) q^{57} +(-3.97725 - 2.29627i) q^{58} +(3.13771 + 1.81156i) q^{59} +(-0.619186 - 0.565792i) q^{60} +(0.500864 + 0.867521i) q^{61} -6.48369 q^{62} +(-6.36984 + 13.7603i) q^{63} -1.00000 q^{64} +(1.15823 - 1.30655i) q^{65} +(-5.43235 - 1.19637i) q^{66} +(0.936987 + 0.540970i) q^{67} +(2.10123 - 3.63943i) q^{68} +(-10.6095 - 2.33653i) q^{69} +(-2.11969 + 1.22381i) q^{70} -4.63041i q^{71} +(1.72758 + 2.45264i) q^{72} +0.325525i q^{73} +(1.04214 + 1.80504i) q^{74} +(5.56788 - 6.09332i) q^{75} +(-2.78126 - 1.60576i) q^{76} +(-8.11614 + 14.0576i) q^{77} +(-5.05080 + 3.67280i) q^{78} +(3.91818 + 6.78649i) q^{79} +0.484256i q^{80} +(3.03092 - 8.47428i) q^{81} -11.0540 q^{82} +(-5.08022 + 2.93306i) q^{83} +(8.34557 - 2.64416i) q^{84} +(-1.76242 - 1.01753i) q^{85} +(8.19896 + 4.73367i) q^{86} +(5.36580 - 5.87217i) q^{87} +(1.60576 + 2.78126i) q^{88} +8.42912i q^{89} +(1.18771 - 0.836592i) q^{90} +(5.76550 + 17.2878i) q^{91} +(3.13608 + 5.43186i) q^{92} +(2.41533 - 10.9673i) q^{93} +(-2.64062 + 4.57369i) q^{94} +(-0.777601 + 1.34684i) q^{95} +(0.372524 - 1.69152i) q^{96} +(11.3021 - 6.52525i) q^{97} -18.5467i q^{98} +(4.04736 - 8.74323i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 14 q^{4} - 16 q^{9} + 2 q^{13} + 8 q^{14} - 14 q^{16} + 16 q^{17} - 8 q^{23} + 14 q^{25} + 8 q^{26} + 18 q^{27} - 16 q^{29} - 8 q^{30} - 68 q^{35} - 8 q^{36} - 8 q^{39} - 10 q^{42} - 4 q^{43} + 10 q^{49}+ \cdots + 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0.523143 + 1.65116i 0.302036 + 0.953296i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −0.419378 0.242128i −0.187552 0.108283i 0.403284 0.915075i \(-0.367869\pi\)
−0.590836 + 0.806792i \(0.701202\pi\)
\(6\) 1.27863 + 1.16837i 0.522000 + 0.476986i
\(7\) 4.37722 2.52719i 1.65443 0.955188i 0.679216 0.733938i \(-0.262320\pi\)
0.975217 0.221249i \(-0.0710134\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −2.45264 + 1.72758i −0.817548 + 0.575861i
\(10\) −0.484256 −0.153135
\(11\) −2.78126 + 1.60576i −0.838583 + 0.484156i −0.856782 0.515678i \(-0.827540\pi\)
0.0181994 + 0.999834i \(0.494207\pi\)
\(12\) 1.69152 + 0.372524i 0.488299 + 0.107538i
\(13\) −0.722307 + 3.53246i −0.200332 + 0.979728i
\(14\) 2.52719 4.37722i 0.675420 1.16986i
\(15\) 0.180397 0.819127i 0.0465783 0.211498i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 4.20245 1.01924 0.509622 0.860398i \(-0.329785\pi\)
0.509622 + 0.860398i \(0.329785\pi\)
\(18\) −1.26026 + 2.72245i −0.297046 + 0.641688i
\(19\) 3.21153i 0.736775i −0.929672 0.368388i \(-0.879910\pi\)
0.929672 0.368388i \(-0.120090\pi\)
\(20\) −0.419378 + 0.242128i −0.0937758 + 0.0541415i
\(21\) 6.46270 + 5.90540i 1.41028 + 1.28866i
\(22\) −1.60576 + 2.78126i −0.342350 + 0.592968i
\(23\) −3.13608 + 5.43186i −0.653919 + 1.13262i 0.328245 + 0.944593i \(0.393543\pi\)
−0.982164 + 0.188028i \(0.939791\pi\)
\(24\) 1.65116 0.523143i 0.337041 0.106786i
\(25\) −2.38275 4.12704i −0.476550 0.825408i
\(26\) 1.14069 + 3.42035i 0.223708 + 0.670787i
\(27\) −4.13559 3.14593i −0.795895 0.605435i
\(28\) 5.05438i 0.955188i
\(29\) −2.29627 3.97725i −0.426406 0.738557i 0.570144 0.821544i \(-0.306887\pi\)
−0.996551 + 0.0829873i \(0.973554\pi\)
\(30\) −0.253335 0.799583i −0.0462524 0.145983i
\(31\) −5.61504 3.24185i −1.00849 0.582253i −0.0977420 0.995212i \(-0.531162\pi\)
−0.910750 + 0.412959i \(0.864495\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) −4.10637 3.75226i −0.714827 0.653185i
\(34\) 3.63943 2.10123i 0.624157 0.360357i
\(35\) −2.44761 −0.413722
\(36\) 0.269808 + 2.98784i 0.0449679 + 0.497974i
\(37\) 2.08429i 0.342654i 0.985214 + 0.171327i \(0.0548055\pi\)
−0.985214 + 0.171327i \(0.945194\pi\)
\(38\) −1.60576 2.78126i −0.260489 0.451181i
\(39\) −6.21052 + 0.655337i −0.994479 + 0.104938i
\(40\) −0.242128 + 0.419378i −0.0382838 + 0.0663095i
\(41\) −9.57301 5.52698i −1.49505 0.863169i −0.495070 0.868853i \(-0.664857\pi\)
−0.999984 + 0.00568392i \(0.998191\pi\)
\(42\) 8.54956 + 1.88288i 1.31923 + 0.290534i
\(43\) 4.73367 + 8.19896i 0.721879 + 1.25033i 0.960246 + 0.279155i \(0.0900544\pi\)
−0.238367 + 0.971175i \(0.576612\pi\)
\(44\) 3.21153i 0.484156i
\(45\) 1.44688 0.130656i 0.215688 0.0194770i
\(46\) 6.27217i 0.924780i
\(47\) −4.57369 + 2.64062i −0.667141 + 0.385174i −0.794992 0.606619i \(-0.792525\pi\)
0.127851 + 0.991793i \(0.459192\pi\)
\(48\) 1.16837 1.27863i 0.168640 0.184555i
\(49\) 9.27337 16.0619i 1.32477 2.29456i
\(50\) −4.12704 2.38275i −0.583652 0.336971i
\(51\) 2.19848 + 6.93891i 0.307849 + 0.971642i
\(52\) 2.69805 + 2.39177i 0.374152 + 0.331678i
\(53\) 6.41990 0.881841 0.440921 0.897546i \(-0.354652\pi\)
0.440921 + 0.897546i \(0.354652\pi\)
\(54\) −5.15449 0.656660i −0.701438 0.0893601i
\(55\) 1.55520 0.209703
\(56\) −2.52719 4.37722i −0.337710 0.584931i
\(57\) 5.30274 1.68009i 0.702365 0.222533i
\(58\) −3.97725 2.29627i −0.522239 0.301515i
\(59\) 3.13771 + 1.81156i 0.408495 + 0.235844i 0.690143 0.723673i \(-0.257548\pi\)
−0.281648 + 0.959518i \(0.590881\pi\)
\(60\) −0.619186 0.565792i −0.0799366 0.0730434i
\(61\) 0.500864 + 0.867521i 0.0641290 + 0.111075i 0.896307 0.443433i \(-0.146240\pi\)
−0.832178 + 0.554508i \(0.812906\pi\)
\(62\) −6.48369 −0.823430
\(63\) −6.36984 + 13.7603i −0.802524 + 1.73363i
\(64\) −1.00000 −0.125000
\(65\) 1.15823 1.30655i 0.143660 0.162057i
\(66\) −5.43235 1.19637i −0.668676 0.147263i
\(67\) 0.936987 + 0.540970i 0.114471 + 0.0660900i 0.556142 0.831087i \(-0.312281\pi\)
−0.441671 + 0.897177i \(0.645614\pi\)
\(68\) 2.10123 3.63943i 0.254811 0.441346i
\(69\) −10.6095 2.33653i −1.27723 0.281286i
\(70\) −2.11969 + 1.22381i −0.253352 + 0.146273i
\(71\) 4.63041i 0.549529i −0.961512 0.274764i \(-0.911400\pi\)
0.961512 0.274764i \(-0.0885999\pi\)
\(72\) 1.72758 + 2.45264i 0.203597 + 0.289047i
\(73\) 0.325525i 0.0380998i 0.999819 + 0.0190499i \(0.00606414\pi\)
−0.999819 + 0.0190499i \(0.993936\pi\)
\(74\) 1.04214 + 1.80504i 0.121147 + 0.209832i
\(75\) 5.56788 6.09332i 0.642923 0.703596i
\(76\) −2.78126 1.60576i −0.319033 0.184194i
\(77\) −8.11614 + 14.0576i −0.924920 + 1.60201i
\(78\) −5.05080 + 3.67280i −0.571890 + 0.415862i
\(79\) 3.91818 + 6.78649i 0.440830 + 0.763540i 0.997751 0.0670253i \(-0.0213508\pi\)
−0.556921 + 0.830565i \(0.688017\pi\)
\(80\) 0.484256i 0.0541415i
\(81\) 3.03092 8.47428i 0.336769 0.941587i
\(82\) −11.0540 −1.22071
\(83\) −5.08022 + 2.93306i −0.557626 + 0.321946i −0.752192 0.658944i \(-0.771003\pi\)
0.194566 + 0.980889i \(0.437670\pi\)
\(84\) 8.34557 2.64416i 0.910577 0.288501i
\(85\) −1.76242 1.01753i −0.191161 0.110367i
\(86\) 8.19896 + 4.73367i 0.884117 + 0.510445i
\(87\) 5.36580 5.87217i 0.575274 0.629563i
\(88\) 1.60576 + 2.78126i 0.171175 + 0.296484i
\(89\) 8.42912i 0.893485i 0.894662 + 0.446743i \(0.147416\pi\)
−0.894662 + 0.446743i \(0.852584\pi\)
\(90\) 1.18771 0.836592i 0.125195 0.0881845i
\(91\) 5.76550 + 17.2878i 0.604388 + 1.81225i
\(92\) 3.13608 + 5.43186i 0.326959 + 0.566310i
\(93\) 2.41533 10.9673i 0.250458 1.13725i
\(94\) −2.64062 + 4.57369i −0.272359 + 0.471740i
\(95\) −0.777601 + 1.34684i −0.0797802 + 0.138183i
\(96\) 0.372524 1.69152i 0.0380206 0.172640i
\(97\) 11.3021 6.52525i 1.14755 0.662539i 0.199262 0.979946i \(-0.436145\pi\)
0.948289 + 0.317407i \(0.102812\pi\)
\(98\) 18.5467i 1.87350i
\(99\) 4.04736 8.74323i 0.406775 0.878728i
\(100\) −4.76550 −0.476550
\(101\) 3.42351 + 5.92969i 0.340652 + 0.590027i 0.984554 0.175081i \(-0.0560189\pi\)
−0.643902 + 0.765108i \(0.722686\pi\)
\(102\) 5.37340 + 4.91003i 0.532046 + 0.486166i
\(103\) −1.77760 + 3.07889i −0.175152 + 0.303373i −0.940214 0.340584i \(-0.889375\pi\)
0.765062 + 0.643957i \(0.222708\pi\)
\(104\) 3.53246 + 0.722307i 0.346386 + 0.0708280i
\(105\) −1.28045 4.04139i −0.124959 0.394400i
\(106\) 5.55980 3.20995i 0.540015 0.311778i
\(107\) 1.41392 0.136689 0.0683445 0.997662i \(-0.478228\pi\)
0.0683445 + 0.997662i \(0.478228\pi\)
\(108\) −4.79225 + 2.00856i −0.461135 + 0.193274i
\(109\) 4.97525i 0.476543i 0.971199 + 0.238271i \(0.0765808\pi\)
−0.971199 + 0.238271i \(0.923419\pi\)
\(110\) 1.34684 0.777601i 0.128417 0.0741413i
\(111\) −3.44148 + 1.09038i −0.326651 + 0.103494i
\(112\) −4.37722 2.52719i −0.413608 0.238797i
\(113\) 6.54415 11.3348i 0.615622 1.06629i −0.374653 0.927165i \(-0.622238\pi\)
0.990275 0.139124i \(-0.0444286\pi\)
\(114\) 3.75226 4.10637i 0.351432 0.384597i
\(115\) 2.63041 1.51867i 0.245287 0.141616i
\(116\) −4.59254 −0.426406
\(117\) −4.33105 9.91171i −0.400406 0.916338i
\(118\) 3.62311 0.333534
\(119\) 18.3951 10.6204i 1.68627 0.973570i
\(120\) −0.819127 0.180397i −0.0747757 0.0164679i
\(121\) −0.343044 + 0.594169i −0.0311858 + 0.0540154i
\(122\) 0.867521 + 0.500864i 0.0785417 + 0.0453461i
\(123\) 4.11787 18.6980i 0.371296 1.68594i
\(124\) −5.61504 + 3.24185i −0.504246 + 0.291126i
\(125\) 4.72900i 0.422975i
\(126\) 1.36371 + 15.1017i 0.121489 + 1.34536i
\(127\) −4.56300 −0.404901 −0.202450 0.979293i \(-0.564890\pi\)
−0.202450 + 0.979293i \(0.564890\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −11.0614 + 12.1053i −0.973902 + 1.06581i
\(130\) 0.349781 1.71061i 0.0306779 0.150031i
\(131\) −1.23473 + 2.13862i −0.107879 + 0.186852i −0.914911 0.403656i \(-0.867739\pi\)
0.807032 + 0.590508i \(0.201073\pi\)
\(132\) −5.30274 + 1.68009i −0.461544 + 0.146233i
\(133\) −8.11614 14.0576i −0.703758 1.21895i
\(134\) 1.08194 0.0934654
\(135\) 0.972658 + 2.32068i 0.0837131 + 0.199732i
\(136\) 4.20245i 0.360357i
\(137\) 16.9831 9.80519i 1.45096 0.837714i 0.452427 0.891802i \(-0.350558\pi\)
0.998536 + 0.0540880i \(0.0172251\pi\)
\(138\) −10.3563 + 3.28124i −0.881590 + 0.279317i
\(139\) 0.193698 0.335495i 0.0164293 0.0284563i −0.857694 0.514161i \(-0.828104\pi\)
0.874123 + 0.485704i \(0.161437\pi\)
\(140\) −1.22381 + 2.11969i −0.103430 + 0.179147i
\(141\) −6.75277 6.17046i −0.568686 0.519646i
\(142\) −2.31521 4.01005i −0.194288 0.336516i
\(143\) −3.66337 10.9846i −0.306346 0.918575i
\(144\) 2.72245 + 1.26026i 0.226871 + 0.105022i
\(145\) 2.22396i 0.184690i
\(146\) 0.162762 + 0.281913i 0.0134703 + 0.0233313i
\(147\) 31.3721 + 6.90911i 2.58753 + 0.569853i
\(148\) 1.80504 + 1.04214i 0.148374 + 0.0856636i
\(149\) 8.19151 + 4.72937i 0.671075 + 0.387445i 0.796484 0.604660i \(-0.206691\pi\)
−0.125409 + 0.992105i \(0.540024\pi\)
\(150\) 1.77526 8.06091i 0.144950 0.658171i
\(151\) 1.15323 0.665819i 0.0938487 0.0541836i −0.452341 0.891845i \(-0.649411\pi\)
0.546190 + 0.837661i \(0.316078\pi\)
\(152\) −3.21153 −0.260489
\(153\) −10.3071 + 7.26008i −0.833281 + 0.586943i
\(154\) 16.2323i 1.30803i
\(155\) 1.56988 + 2.71912i 0.126096 + 0.218405i
\(156\) −2.53772 + 5.70613i −0.203180 + 0.456856i
\(157\) 2.92122 5.05970i 0.233139 0.403808i −0.725592 0.688126i \(-0.758434\pi\)
0.958730 + 0.284318i \(0.0917671\pi\)
\(158\) 6.78649 + 3.91818i 0.539904 + 0.311714i
\(159\) 3.35852 + 10.6003i 0.266348 + 0.840656i
\(160\) 0.242128 + 0.419378i 0.0191419 + 0.0331547i
\(161\) 31.7019i 2.49846i
\(162\) −1.61229 8.85441i −0.126673 0.695668i
\(163\) 15.1340i 1.18538i 0.805430 + 0.592691i \(0.201935\pi\)
−0.805430 + 0.592691i \(0.798065\pi\)
\(164\) −9.57301 + 5.52698i −0.747527 + 0.431585i
\(165\) 0.813592 + 2.56788i 0.0633381 + 0.199909i
\(166\) −2.93306 + 5.08022i −0.227650 + 0.394301i
\(167\) 10.4155 + 6.01341i 0.805978 + 0.465331i 0.845557 0.533885i \(-0.179268\pi\)
−0.0395794 + 0.999216i \(0.512602\pi\)
\(168\) 5.90540 6.46270i 0.455611 0.498608i
\(169\) −11.9565 5.10304i −0.919734 0.392542i
\(170\) −2.03506 −0.156082
\(171\) 5.54818 + 7.87673i 0.424280 + 0.602349i
\(172\) 9.46735 0.721879
\(173\) −4.42932 7.67180i −0.336755 0.583276i 0.647066 0.762434i \(-0.275996\pi\)
−0.983820 + 0.179158i \(0.942663\pi\)
\(174\) 1.71083 7.76835i 0.129698 0.588917i
\(175\) −20.8596 12.0433i −1.57684 0.910389i
\(176\) 2.78126 + 1.60576i 0.209646 + 0.121039i
\(177\) −1.34970 + 6.12855i −0.101449 + 0.460650i
\(178\) 4.21456 + 7.29984i 0.315895 + 0.547146i
\(179\) 10.3704 0.775121 0.387561 0.921844i \(-0.373318\pi\)
0.387561 + 0.921844i \(0.373318\pi\)
\(180\) 0.610289 1.31836i 0.0454883 0.0982650i
\(181\) 10.8407 0.805783 0.402892 0.915248i \(-0.368005\pi\)
0.402892 + 0.915248i \(0.368005\pi\)
\(182\) 13.6369 + 12.0889i 1.01084 + 0.896088i
\(183\) −1.17039 + 1.28084i −0.0865178 + 0.0946826i
\(184\) 5.43186 + 3.13608i 0.400442 + 0.231195i
\(185\) 0.504664 0.874103i 0.0371036 0.0642653i
\(186\) −3.39190 10.7056i −0.248706 0.784973i
\(187\) −11.6881 + 6.74815i −0.854721 + 0.493474i
\(188\) 5.28124i 0.385174i
\(189\) −26.0528 3.31901i −1.89506 0.241422i
\(190\) 1.55520i 0.112826i
\(191\) −5.62900 9.74971i −0.407300 0.705464i 0.587286 0.809379i \(-0.300196\pi\)
−0.994586 + 0.103915i \(0.966863\pi\)
\(192\) −0.523143 1.65116i −0.0377546 0.119162i
\(193\) 6.60401 + 3.81283i 0.475367 + 0.274453i 0.718484 0.695544i \(-0.244836\pi\)
−0.243117 + 0.969997i \(0.578170\pi\)
\(194\) 6.52525 11.3021i 0.468486 0.811441i
\(195\) 2.76323 + 1.22891i 0.197879 + 0.0880038i
\(196\) −9.27337 16.0619i −0.662383 1.14728i
\(197\) 24.5170i 1.74677i −0.487035 0.873383i \(-0.661921\pi\)
0.487035 0.873383i \(-0.338079\pi\)
\(198\) −0.866495 9.59554i −0.0615791 0.681925i
\(199\) −13.5310 −0.959187 −0.479593 0.877491i \(-0.659216\pi\)
−0.479593 + 0.877491i \(0.659216\pi\)
\(200\) −4.12704 + 2.38275i −0.291826 + 0.168486i
\(201\) −0.403049 + 1.83012i −0.0284289 + 0.129087i
\(202\) 5.92969 + 3.42351i 0.417212 + 0.240877i
\(203\) −20.1025 11.6062i −1.41092 0.814596i
\(204\) 7.10852 + 1.56552i 0.497696 + 0.109608i
\(205\) 2.67647 + 4.63579i 0.186933 + 0.323777i
\(206\) 3.55520i 0.247703i
\(207\) −1.69228 18.7402i −0.117621 1.30254i
\(208\) 3.42035 1.14069i 0.237159 0.0790929i
\(209\) 5.15696 + 8.93211i 0.356714 + 0.617847i
\(210\) −3.12960 2.85972i −0.215963 0.197340i
\(211\) −11.9346 + 20.6713i −0.821610 + 1.42307i 0.0828724 + 0.996560i \(0.473591\pi\)
−0.904483 + 0.426511i \(0.859743\pi\)
\(212\) 3.20995 5.55980i 0.220460 0.381849i
\(213\) 7.64554 2.42237i 0.523864 0.165978i
\(214\) 1.22449 0.706961i 0.0837045 0.0483268i
\(215\) 4.58462i 0.312668i
\(216\) −3.14593 + 4.13559i −0.214053 + 0.281391i
\(217\) −32.7710 −2.22464
\(218\) 2.48763 + 4.30869i 0.168483 + 0.291822i
\(219\) −0.537493 + 0.170296i −0.0363204 + 0.0115075i
\(220\) 0.777601 1.34684i 0.0524258 0.0908042i
\(221\) −3.03546 + 14.8450i −0.204187 + 0.998583i
\(222\) −2.43522 + 2.66504i −0.163441 + 0.178866i
\(223\) −11.1456 + 6.43490i −0.746363 + 0.430913i −0.824378 0.566040i \(-0.808475\pi\)
0.0780155 + 0.996952i \(0.475142\pi\)
\(224\) −5.05438 −0.337710
\(225\) 12.9738 + 6.00577i 0.864922 + 0.400385i
\(226\) 13.0883i 0.870621i
\(227\) −15.6362 + 9.02759i −1.03781 + 0.599182i −0.919213 0.393760i \(-0.871174\pi\)
−0.118600 + 0.992942i \(0.537841\pi\)
\(228\) 1.19637 5.43235i 0.0792317 0.359766i
\(229\) −18.3370 10.5869i −1.21174 0.699599i −0.248603 0.968606i \(-0.579971\pi\)
−0.963138 + 0.269006i \(0.913305\pi\)
\(230\) 1.51867 2.63041i 0.100138 0.173444i
\(231\) −27.4571 6.04691i −1.80655 0.397858i
\(232\) −3.97725 + 2.29627i −0.261119 + 0.150757i
\(233\) 29.0610 1.90385 0.951923 0.306337i \(-0.0991033\pi\)
0.951923 + 0.306337i \(0.0991033\pi\)
\(234\) −8.70666 6.41827i −0.569172 0.419575i
\(235\) 2.55747 0.166831
\(236\) 3.13771 1.81156i 0.204247 0.117922i
\(237\) −9.15580 + 10.0198i −0.594733 + 0.650859i
\(238\) 10.6204 18.3951i 0.688418 1.19237i
\(239\) 6.29516 + 3.63451i 0.407200 + 0.235097i 0.689586 0.724204i \(-0.257793\pi\)
−0.282386 + 0.959301i \(0.591126\pi\)
\(240\) −0.799583 + 0.253335i −0.0516129 + 0.0163527i
\(241\) 15.5109 8.95521i 0.999144 0.576856i 0.0911491 0.995837i \(-0.470946\pi\)
0.907995 + 0.418981i \(0.137613\pi\)
\(242\) 0.686087i 0.0441034i
\(243\) 15.5780 + 0.571274i 0.999328 + 0.0366473i
\(244\) 1.00173 0.0641290
\(245\) −7.77809 + 4.49068i −0.496924 + 0.286899i
\(246\) −5.78280 18.2518i −0.368698 1.16369i
\(247\) 11.3446 + 2.31971i 0.721839 + 0.147600i
\(248\) −3.24185 + 5.61504i −0.205857 + 0.356556i
\(249\) −7.50063 6.85383i −0.475333 0.434344i
\(250\) 2.36450 + 4.09543i 0.149544 + 0.259018i
\(251\) −3.84702 −0.242822 −0.121411 0.992602i \(-0.538742\pi\)
−0.121411 + 0.992602i \(0.538742\pi\)
\(252\) 8.73185 + 12.3966i 0.550055 + 0.780912i
\(253\) 20.1432i 1.26639i
\(254\) −3.95167 + 2.28150i −0.247950 + 0.143154i
\(255\) 0.758110 3.44234i 0.0474747 0.215568i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 7.38375 12.7890i 0.460586 0.797758i −0.538404 0.842687i \(-0.680973\pi\)
0.998990 + 0.0449285i \(0.0143060\pi\)
\(258\) −3.52682 + 16.0142i −0.219570 + 0.996999i
\(259\) 5.26738 + 9.12337i 0.327299 + 0.566899i
\(260\) −0.552388 1.65633i −0.0342576 0.102721i
\(261\) 12.5030 + 5.78779i 0.773913 + 0.358255i
\(262\) 2.46946i 0.152564i
\(263\) −4.38124 7.58853i −0.270159 0.467929i 0.698743 0.715372i \(-0.253743\pi\)
−0.968902 + 0.247443i \(0.920410\pi\)
\(264\) −3.75226 + 4.10637i −0.230936 + 0.252729i
\(265\) −2.69237 1.55444i −0.165391 0.0954884i
\(266\) −14.0576 8.11614i −0.861924 0.497632i
\(267\) −13.9178 + 4.40963i −0.851756 + 0.269865i
\(268\) 0.936987 0.540970i 0.0572356 0.0330450i
\(269\) −8.90736 −0.543091 −0.271546 0.962426i \(-0.587535\pi\)
−0.271546 + 0.962426i \(0.587535\pi\)
\(270\) 2.00269 + 1.52344i 0.121880 + 0.0927133i
\(271\) 3.58551i 0.217804i −0.994052 0.108902i \(-0.965266\pi\)
0.994052 0.108902i \(-0.0347335\pi\)
\(272\) −2.10123 3.63943i −0.127406 0.220673i
\(273\) −25.5286 + 18.5637i −1.54506 + 1.12353i
\(274\) 9.80519 16.9831i 0.592353 1.02599i
\(275\) 13.2541 + 7.65226i 0.799253 + 0.461449i
\(276\) −7.32823 + 8.01980i −0.441108 + 0.482735i
\(277\) 7.43966 + 12.8859i 0.447006 + 0.774237i 0.998190 0.0601468i \(-0.0191569\pi\)
−0.551183 + 0.834384i \(0.685824\pi\)
\(278\) 0.387396i 0.0232345i
\(279\) 19.3723 1.74935i 1.15979 0.104731i
\(280\) 2.44761i 0.146273i
\(281\) 14.2995 8.25582i 0.853037 0.492501i −0.00863764 0.999963i \(-0.502749\pi\)
0.861674 + 0.507462i \(0.169416\pi\)
\(282\) −8.93330 1.96739i −0.531970 0.117156i
\(283\) 0.267833 0.463900i 0.0159210 0.0275760i −0.857955 0.513725i \(-0.828265\pi\)
0.873876 + 0.486149i \(0.161599\pi\)
\(284\) −4.01005 2.31521i −0.237953 0.137382i
\(285\) −2.63065 0.579350i −0.155826 0.0343177i
\(286\) −8.66485 7.68122i −0.512363 0.454200i
\(287\) −55.8709 −3.29795
\(288\) 2.98784 0.269808i 0.176060 0.0158986i
\(289\) 0.660618 0.0388599
\(290\) 1.11198 + 1.92601i 0.0652978 + 0.113099i
\(291\) 16.6868 + 15.2479i 0.978199 + 0.893846i
\(292\) 0.281913 + 0.162762i 0.0164977 + 0.00952495i
\(293\) −16.9651 9.79482i −0.991113 0.572220i −0.0855065 0.996338i \(-0.527251\pi\)
−0.905607 + 0.424118i \(0.860584\pi\)
\(294\) 30.6236 9.70258i 1.78600 0.565866i
\(295\) −0.877257 1.51945i −0.0510758 0.0884660i
\(296\) 2.08429 0.121147
\(297\) 16.5538 + 2.10888i 0.960549 + 0.122370i
\(298\) 9.45874 0.547930
\(299\) −16.9226 15.0016i −0.978659 0.867562i
\(300\) −2.49303 7.86859i −0.143935 0.454293i
\(301\) 41.4407 + 23.9258i 2.38860 + 1.37906i
\(302\) 0.665819 1.15323i 0.0383136 0.0663611i
\(303\) −7.99988 + 8.75483i −0.459581 + 0.502952i
\(304\) −2.78126 + 1.60576i −0.159516 + 0.0920969i
\(305\) 0.485092i 0.0277763i
\(306\) −5.29619 + 11.4410i −0.302763 + 0.654037i
\(307\) 1.26064i 0.0719485i 0.999353 + 0.0359743i \(0.0114534\pi\)
−0.999353 + 0.0359743i \(0.988547\pi\)
\(308\) 8.11614 + 14.0576i 0.462460 + 0.801004i
\(309\) −6.01368 1.32440i −0.342106 0.0753424i
\(310\) 2.71912 + 1.56988i 0.154436 + 0.0891634i
\(311\) 8.79222 15.2286i 0.498561 0.863533i −0.501438 0.865194i \(-0.667195\pi\)
0.999999 + 0.00166095i \(0.000528697\pi\)
\(312\) 0.655337 + 6.21052i 0.0371011 + 0.351601i
\(313\) −0.102706 0.177891i −0.00580526 0.0100550i 0.863108 0.505019i \(-0.168515\pi\)
−0.868913 + 0.494964i \(0.835181\pi\)
\(314\) 5.84243i 0.329708i
\(315\) 6.00312 4.22845i 0.338238 0.238246i
\(316\) 7.83637 0.440830
\(317\) −15.6583 + 9.04030i −0.879455 + 0.507754i −0.870479 0.492206i \(-0.836191\pi\)
−0.00897641 + 0.999960i \(0.502857\pi\)
\(318\) 8.20870 + 7.50084i 0.460321 + 0.420626i
\(319\) 12.7731 + 7.37453i 0.715154 + 0.412894i
\(320\) 0.419378 + 0.242128i 0.0234439 + 0.0135354i
\(321\) 0.739682 + 2.33461i 0.0412850 + 0.130305i
\(322\) 15.8509 + 27.4546i 0.883339 + 1.52999i
\(323\) 13.4963i 0.750954i
\(324\) −5.82348 6.86200i −0.323527 0.381222i
\(325\) 16.2997 5.43597i 0.904144 0.301533i
\(326\) 7.56698 + 13.1064i 0.419096 + 0.725896i
\(327\) −8.21492 + 2.60277i −0.454286 + 0.143933i
\(328\) −5.52698 + 9.57301i −0.305176 + 0.528581i
\(329\) −13.3467 + 23.1171i −0.735827 + 1.27449i
\(330\) 1.98853 + 1.81706i 0.109465 + 0.100026i
\(331\) 3.63300 2.09751i 0.199688 0.115290i −0.396822 0.917896i \(-0.629887\pi\)
0.596510 + 0.802606i \(0.296554\pi\)
\(332\) 5.86613i 0.321946i
\(333\) −3.60077 5.11201i −0.197321 0.280136i
\(334\) 12.0268 0.658078
\(335\) −0.261968 0.453742i −0.0143128 0.0247906i
\(336\) 1.88288 8.54956i 0.102719 0.466417i
\(337\) −6.88041 + 11.9172i −0.374800 + 0.649172i −0.990297 0.138967i \(-0.955622\pi\)
0.615497 + 0.788139i \(0.288955\pi\)
\(338\) −12.9062 + 1.55891i −0.702004 + 0.0847935i
\(339\) 22.1391 + 4.87571i 1.20243 + 0.264812i
\(340\) −1.76242 + 1.01753i −0.0955805 + 0.0551834i
\(341\) 20.8226 1.12761
\(342\) 8.74323 + 4.04736i 0.472780 + 0.218856i
\(343\) 58.3615i 3.15123i
\(344\) 8.19896 4.73367i 0.442059 0.255223i
\(345\) 3.88364 + 3.54874i 0.209088 + 0.191058i
\(346\) −7.67180 4.42932i −0.412439 0.238122i
\(347\) 11.9351 20.6722i 0.640710 1.10974i −0.344565 0.938763i \(-0.611974\pi\)
0.985275 0.170979i \(-0.0546931\pi\)
\(348\) −2.40255 7.58300i −0.128790 0.406491i
\(349\) −16.7557 + 9.67391i −0.896913 + 0.517833i −0.876197 0.481953i \(-0.839928\pi\)
−0.0207153 + 0.999785i \(0.506594\pi\)
\(350\) −24.0866 −1.28748
\(351\) 14.1000 12.3365i 0.752604 0.658473i
\(352\) 3.21153 0.171175
\(353\) −24.0606 + 13.8914i −1.28062 + 0.739365i −0.976961 0.213417i \(-0.931541\pi\)
−0.303656 + 0.952782i \(0.598207\pi\)
\(354\) 1.89540 + 5.98233i 0.100740 + 0.317957i
\(355\) −1.12115 + 1.94189i −0.0595046 + 0.103065i
\(356\) 7.29984 + 4.21456i 0.386891 + 0.223371i
\(357\) 27.1592 + 24.8172i 1.43742 + 1.31346i
\(358\) 8.98104 5.18521i 0.474663 0.274047i
\(359\) 23.8304i 1.25772i 0.777517 + 0.628861i \(0.216479\pi\)
−0.777517 + 0.628861i \(0.783521\pi\)
\(360\) −0.130656 1.44688i −0.00688617 0.0762573i
\(361\) 8.68609 0.457162
\(362\) 9.38833 5.42035i 0.493440 0.284887i
\(363\) −1.16053 0.255584i −0.0609119 0.0134147i
\(364\) 17.8544 + 3.65081i 0.935824 + 0.191355i
\(365\) 0.0788187 0.136518i 0.00412556 0.00714568i
\(366\) −0.373168 + 1.69444i −0.0195058 + 0.0885697i
\(367\) 5.04643 + 8.74067i 0.263421 + 0.456259i 0.967149 0.254211i \(-0.0818157\pi\)
−0.703728 + 0.710470i \(0.748482\pi\)
\(368\) 6.27217 0.326959
\(369\) 33.0275 2.98244i 1.71934 0.155260i
\(370\) 1.00933i 0.0524724i
\(371\) 28.1013 16.2243i 1.45895 0.842324i
\(372\) −8.29027 7.57538i −0.429830 0.392765i
\(373\) 4.27370 7.40227i 0.221284 0.383275i −0.733914 0.679242i \(-0.762309\pi\)
0.955198 + 0.295967i \(0.0956419\pi\)
\(374\) −6.74815 + 11.6881i −0.348938 + 0.604379i
\(375\) −7.80832 + 2.47394i −0.403220 + 0.127754i
\(376\) 2.64062 + 4.57369i 0.136180 + 0.235870i
\(377\) 15.7081 5.23868i 0.809008 0.269806i
\(378\) −24.2218 + 10.1520i −1.24584 + 0.522164i
\(379\) 30.7125i 1.57760i −0.614653 0.788798i \(-0.710704\pi\)
0.614653 0.788798i \(-0.289296\pi\)
\(380\) 0.777601 + 1.34684i 0.0398901 + 0.0690916i
\(381\) −2.38710 7.53423i −0.122295 0.385990i
\(382\) −9.74971 5.62900i −0.498839 0.288005i
\(383\) −2.49892 1.44275i −0.127689 0.0737212i 0.434795 0.900529i \(-0.356821\pi\)
−0.562484 + 0.826808i \(0.690154\pi\)
\(384\) −1.27863 1.16837i −0.0652500 0.0596233i
\(385\) 6.80746 3.93029i 0.346940 0.200306i
\(386\) 7.62566 0.388136
\(387\) −25.7744 11.9313i −1.31019 0.606504i
\(388\) 13.0505i 0.662539i
\(389\) 5.94776 + 10.3018i 0.301564 + 0.522323i 0.976490 0.215561i \(-0.0691581\pi\)
−0.674927 + 0.737885i \(0.735825\pi\)
\(390\) 3.00748 0.317351i 0.152290 0.0160697i
\(391\) −13.1792 + 22.8271i −0.666503 + 1.15442i
\(392\) −16.0619 9.27337i −0.811250 0.468376i
\(393\) −4.17714 0.919935i −0.210709 0.0464046i
\(394\) −12.2585 21.2324i −0.617575 1.06967i
\(395\) 3.79481i 0.190937i
\(396\) −5.54818 7.87673i −0.278806 0.395821i
\(397\) 23.8021i 1.19459i 0.802020 + 0.597297i \(0.203759\pi\)
−0.802020 + 0.597297i \(0.796241\pi\)
\(398\) −11.7182 + 6.76550i −0.587379 + 0.339124i
\(399\) 18.9654 20.7551i 0.949455 1.03906i
\(400\) −2.38275 + 4.12704i −0.119137 + 0.206352i
\(401\) −7.79168 4.49853i −0.389098 0.224646i 0.292671 0.956213i \(-0.405456\pi\)
−0.681769 + 0.731567i \(0.738789\pi\)
\(402\) 0.566009 + 1.78645i 0.0282300 + 0.0891002i
\(403\) 15.5075 17.4933i 0.772483 0.871404i
\(404\) 6.84702 0.340652
\(405\) −3.32296 + 2.82006i −0.165119 + 0.140130i
\(406\) −23.2124 −1.15201
\(407\) −3.34687 5.79695i −0.165898 0.287344i
\(408\) 6.93891 2.19848i 0.343527 0.108841i
\(409\) −27.8344 16.0702i −1.37632 0.794620i −0.384608 0.923080i \(-0.625663\pi\)
−0.991715 + 0.128460i \(0.958997\pi\)
\(410\) 4.63579 + 2.67647i 0.228945 + 0.132182i
\(411\) 25.0745 + 22.9122i 1.23683 + 1.13018i
\(412\) 1.77760 + 3.07889i 0.0875761 + 0.151686i
\(413\) 18.3126 0.901103
\(414\) −10.8357 15.3834i −0.532545 0.756052i
\(415\) 2.84071 0.139445
\(416\) 2.39177 2.69805i 0.117266 0.132283i
\(417\) 0.655287 + 0.144314i 0.0320895 + 0.00706711i
\(418\) 8.93211 + 5.15696i 0.436884 + 0.252235i
\(419\) −1.68689 + 2.92177i −0.0824098 + 0.142738i −0.904285 0.426930i \(-0.859595\pi\)
0.821875 + 0.569668i \(0.192928\pi\)
\(420\) −4.14017 0.911795i −0.202020 0.0444910i
\(421\) −2.26626 + 1.30842i −0.110451 + 0.0637687i −0.554208 0.832378i \(-0.686979\pi\)
0.443757 + 0.896147i \(0.353645\pi\)
\(422\) 23.8692i 1.16193i
\(423\) 6.65574 14.3779i 0.323613 0.699078i
\(424\) 6.41990i 0.311778i
\(425\) −10.0134 17.3437i −0.485721 0.841293i
\(426\) 5.41005 5.92060i 0.262118 0.286854i
\(427\) 4.38478 + 2.53155i 0.212194 + 0.122510i
\(428\) 0.706961 1.22449i 0.0341722 0.0591880i
\(429\) 16.2208 11.7953i 0.783147 0.569482i
\(430\) −2.29231 3.97040i −0.110545 0.191470i
\(431\) 1.25113i 0.0602647i 0.999546 + 0.0301324i \(0.00959288\pi\)
−0.999546 + 0.0301324i \(0.990407\pi\)
\(432\) −0.656660 + 5.15449i −0.0315936 + 0.247996i
\(433\) −4.77117 −0.229288 −0.114644 0.993407i \(-0.536573\pi\)
−0.114644 + 0.993407i \(0.536573\pi\)
\(434\) −28.3806 + 16.3855i −1.36231 + 0.786530i
\(435\) −3.67211 + 1.16345i −0.176064 + 0.0557831i
\(436\) 4.30869 + 2.48763i 0.206349 + 0.119136i
\(437\) 17.4446 + 10.0716i 0.834486 + 0.481791i
\(438\) −0.380335 + 0.416227i −0.0181731 + 0.0198881i
\(439\) −16.8509 29.1867i −0.804252 1.39300i −0.916795 0.399358i \(-0.869233\pi\)
0.112543 0.993647i \(-0.464100\pi\)
\(440\) 1.55520i 0.0741413i
\(441\) 5.00405 + 55.4147i 0.238288 + 2.63880i
\(442\) 4.79371 + 14.3739i 0.228014 + 0.683696i
\(443\) 2.68876 + 4.65706i 0.127747 + 0.221264i 0.922803 0.385272i \(-0.125892\pi\)
−0.795057 + 0.606535i \(0.792559\pi\)
\(444\) −0.776447 + 3.52560i −0.0368485 + 0.167318i
\(445\) 2.04093 3.53499i 0.0967492 0.167575i
\(446\) −6.43490 + 11.1456i −0.304701 + 0.527758i
\(447\) −3.52361 + 15.9996i −0.166661 + 0.756756i
\(448\) −4.37722 + 2.52719i −0.206804 + 0.119398i
\(449\) 16.7813i 0.791958i −0.918260 0.395979i \(-0.870405\pi\)
0.918260 0.395979i \(-0.129595\pi\)
\(450\) 14.2386 1.28577i 0.671212 0.0606116i
\(451\) 35.5001 1.67163
\(452\) −6.54415 11.3348i −0.307811 0.533145i
\(453\) 1.70268 + 1.55585i 0.0799988 + 0.0731002i
\(454\) −9.02759 + 15.6362i −0.423686 + 0.733845i
\(455\) 1.76793 8.64609i 0.0828817 0.405335i
\(456\) −1.68009 5.30274i −0.0786773 0.248324i
\(457\) −20.5067 + 11.8396i −0.959263 + 0.553831i −0.895946 0.444162i \(-0.853501\pi\)
−0.0633172 + 0.997993i \(0.520168\pi\)
\(458\) −21.1737 −0.989383
\(459\) −17.3796 13.2206i −0.811212 0.617086i
\(460\) 3.03733i 0.141616i
\(461\) −29.8451 + 17.2311i −1.39003 + 0.802533i −0.993318 0.115412i \(-0.963181\pi\)
−0.396709 + 0.917944i \(0.629848\pi\)
\(462\) −26.8020 + 8.49179i −1.24694 + 0.395074i
\(463\) 19.4659 + 11.2386i 0.904657 + 0.522304i 0.878708 0.477359i \(-0.158406\pi\)
0.0259487 + 0.999663i \(0.491739\pi\)
\(464\) −2.29627 + 3.97725i −0.106602 + 0.184639i
\(465\) −3.66842 + 4.01461i −0.170119 + 0.186173i
\(466\) 25.1675 14.5305i 1.16586 0.673111i
\(467\) −4.43632 −0.205288 −0.102644 0.994718i \(-0.532730\pi\)
−0.102644 + 0.994718i \(0.532730\pi\)
\(468\) −10.7493 1.20506i −0.496887 0.0557037i
\(469\) 5.46853 0.252513
\(470\) 2.21484 1.27874i 0.102163 0.0589837i
\(471\) 9.88257 + 2.17645i 0.455365 + 0.100285i
\(472\) 1.81156 3.13771i 0.0833836 0.144425i
\(473\) −26.3312 15.2023i −1.21071 0.699004i
\(474\) −2.91924 + 13.2553i −0.134085 + 0.608838i
\(475\) −13.2541 + 7.65226i −0.608140 + 0.351110i
\(476\) 21.2408i 0.973570i
\(477\) −15.7457 + 11.0909i −0.720948 + 0.507818i
\(478\) 7.26902 0.332477
\(479\) 10.2334 5.90827i 0.467577 0.269956i −0.247648 0.968850i \(-0.579658\pi\)
0.715225 + 0.698894i \(0.246324\pi\)
\(480\) −0.565792 + 0.619186i −0.0258247 + 0.0282618i
\(481\) −7.36265 1.50549i −0.335708 0.0686446i
\(482\) 8.95521 15.5109i 0.407899 0.706501i
\(483\) −52.3448 + 16.5846i −2.38177 + 0.754626i
\(484\) 0.343044 + 0.594169i 0.0155929 + 0.0270077i
\(485\) −6.31979 −0.286967
\(486\) 13.7766 7.29425i 0.624918 0.330874i
\(487\) 25.8373i 1.17080i 0.810745 + 0.585400i \(0.199062\pi\)
−0.810745 + 0.585400i \(0.800938\pi\)
\(488\) 0.867521 0.500864i 0.0392708 0.0226730i
\(489\) −24.9885 + 7.91721i −1.13002 + 0.358029i
\(490\) −4.49068 + 7.77809i −0.202868 + 0.351378i
\(491\) −5.59995 + 9.69940i −0.252722 + 0.437728i −0.964274 0.264906i \(-0.914659\pi\)
0.711552 + 0.702633i \(0.247993\pi\)
\(492\) −14.1340 12.9152i −0.637208 0.582260i
\(493\) −9.64996 16.7142i −0.434612 0.752771i
\(494\) 10.9846 3.66337i 0.494219 0.164823i
\(495\) −3.81436 + 2.68674i −0.171443 + 0.120760i
\(496\) 6.48369i 0.291126i
\(497\) −11.7019 20.2683i −0.524903 0.909159i
\(498\) −9.92265 2.18527i −0.444644 0.0979245i
\(499\) −13.3884 7.72982i −0.599349 0.346034i 0.169436 0.985541i \(-0.445805\pi\)
−0.768786 + 0.639507i \(0.779139\pi\)
\(500\) 4.09543 + 2.36450i 0.183153 + 0.105744i
\(501\) −4.48028 + 20.3435i −0.200164 + 0.908883i
\(502\) −3.33162 + 1.92351i −0.148697 + 0.0858505i
\(503\) −6.00330 −0.267674 −0.133837 0.991003i \(-0.542730\pi\)
−0.133837 + 0.991003i \(0.542730\pi\)
\(504\) 13.7603 + 6.36984i 0.612932 + 0.283735i
\(505\) 3.31571i 0.147547i
\(506\) −10.0716 17.4446i −0.447738 0.775505i
\(507\) 2.17095 22.4118i 0.0964153 0.995341i
\(508\) −2.28150 + 3.95167i −0.101225 + 0.175327i
\(509\) 18.6801 + 10.7849i 0.827979 + 0.478034i 0.853160 0.521649i \(-0.174683\pi\)
−0.0251810 + 0.999683i \(0.508016\pi\)
\(510\) −1.06463 3.36021i −0.0471425 0.148793i
\(511\) 0.822663 + 1.42489i 0.0363925 + 0.0630336i
\(512\) 1.00000i 0.0441942i
\(513\) −10.1032 + 13.2816i −0.446069 + 0.586396i
\(514\) 14.7675i 0.651367i
\(515\) 1.49097 0.860814i 0.0657001 0.0379320i
\(516\) 4.95277 + 15.6321i 0.218034 + 0.688164i
\(517\) 8.48043 14.6885i 0.372969 0.646001i
\(518\) 9.12337 + 5.26738i 0.400858 + 0.231435i
\(519\) 10.3502 11.3269i 0.454323 0.497198i
\(520\) −1.30655 1.15823i −0.0572958 0.0507916i
\(521\) 24.0543 1.05384 0.526918 0.849916i \(-0.323347\pi\)
0.526918 + 0.849916i \(0.323347\pi\)
\(522\) 13.7218 1.23910i 0.600586 0.0542340i
\(523\) −10.8449 −0.474215 −0.237107 0.971483i \(-0.576199\pi\)
−0.237107 + 0.971483i \(0.576199\pi\)
\(524\) 1.23473 + 2.13862i 0.0539395 + 0.0934260i
\(525\) 8.97285 40.7429i 0.391607 1.77817i
\(526\) −7.58853 4.38124i −0.330876 0.191031i
\(527\) −23.5970 13.6237i −1.02790 0.593458i
\(528\) −1.19637 + 5.43235i −0.0520654 + 0.236413i
\(529\) −8.17003 14.1509i −0.355219 0.615257i
\(530\) −3.10888 −0.135041
\(531\) −10.8253 + 0.977543i −0.469777 + 0.0424218i
\(532\) −16.2323 −0.703758
\(533\) 26.4385 29.8241i 1.14518 1.29183i
\(534\) −9.84836 + 10.7778i −0.426180 + 0.466399i
\(535\) −0.592967 0.342350i −0.0256362 0.0148011i
\(536\) 0.540970 0.936987i 0.0233663 0.0404717i
\(537\) 5.42520 + 17.1232i 0.234115 + 0.738920i
\(538\) −7.71400 + 4.45368i −0.332574 + 0.192012i
\(539\) 59.5633i 2.56558i
\(540\) 2.49609 + 0.317991i 0.107415 + 0.0136842i
\(541\) 12.2998i 0.528808i −0.964412 0.264404i \(-0.914825\pi\)
0.964412 0.264404i \(-0.0851753\pi\)
\(542\) −1.79275 3.10514i −0.0770054 0.133377i
\(543\) 5.67123 + 17.8997i 0.243376 + 0.768150i
\(544\) −3.63943 2.10123i −0.156039 0.0900894i
\(545\) 1.20465 2.08651i 0.0516014 0.0893763i
\(546\) −12.8266 + 28.8410i −0.548928 + 1.23428i
\(547\) 10.3452 + 17.9183i 0.442327 + 0.766133i 0.997862 0.0653602i \(-0.0208196\pi\)
−0.555534 + 0.831493i \(0.687486\pi\)
\(548\) 19.6104i 0.837714i
\(549\) −2.72715 1.26244i −0.116392 0.0538795i
\(550\) 15.3045 0.652587
\(551\) −12.7731 + 7.37453i −0.544151 + 0.314165i
\(552\) −2.33653 + 10.6095i −0.0994495 + 0.451569i
\(553\) 34.3015 + 19.8040i 1.45865 + 0.842151i
\(554\) 12.8859 + 7.43966i 0.547468 + 0.316081i
\(555\) 1.70729 + 0.375999i 0.0724706 + 0.0159603i
\(556\) −0.193698 0.335495i −0.00821463 0.0142282i
\(557\) 14.2838i 0.605226i −0.953114 0.302613i \(-0.902141\pi\)
0.953114 0.302613i \(-0.0978589\pi\)
\(558\) 15.9022 11.2011i 0.673193 0.474181i
\(559\) −32.3817 + 10.7993i −1.36960 + 0.456764i
\(560\) 1.22381 + 2.11969i 0.0517152 + 0.0895734i
\(561\) −17.2568 15.7687i −0.728584 0.665756i
\(562\) 8.25582 14.2995i 0.348251 0.603188i
\(563\) 17.9673 31.1203i 0.757231 1.31156i −0.187026 0.982355i \(-0.559885\pi\)
0.944257 0.329208i \(-0.106782\pi\)
\(564\) −8.72016 + 2.76284i −0.367185 + 0.116337i
\(565\) −5.48895 + 3.16905i −0.230922 + 0.133323i
\(566\) 0.535666i 0.0225157i
\(567\) −8.14910 44.7535i −0.342230 1.87947i
\(568\) −4.63041 −0.194288
\(569\) 18.5315 + 32.0976i 0.776882 + 1.34560i 0.933730 + 0.357977i \(0.116533\pi\)
−0.156848 + 0.987623i \(0.550133\pi\)
\(570\) −2.56788 + 0.813592i −0.107557 + 0.0340776i
\(571\) 23.1732 40.1372i 0.969769 1.67969i 0.273551 0.961857i \(-0.411802\pi\)
0.696217 0.717831i \(-0.254865\pi\)
\(572\) −11.3446 2.31971i −0.474341 0.0969919i
\(573\) 13.1535 14.3949i 0.549497 0.601354i
\(574\) −48.3856 + 27.9354i −2.01958 + 1.16600i
\(575\) 29.8900 1.24650
\(576\) 2.45264 1.72758i 0.102193 0.0719826i
\(577\) 31.4447i 1.30906i −0.756036 0.654530i \(-0.772866\pi\)
0.756036 0.654530i \(-0.227134\pi\)
\(578\) 0.572112 0.330309i 0.0237967 0.0137390i
\(579\) −2.84074 + 12.8989i −0.118057 + 0.536061i
\(580\) 1.92601 + 1.11198i 0.0799731 + 0.0461725i
\(581\) −14.8248 + 25.6773i −0.615037 + 1.06527i
\(582\) 22.0751 + 4.86163i 0.915044 + 0.201521i
\(583\) −17.8555 + 10.3088i −0.739497 + 0.426949i
\(584\) 0.325525 0.0134703
\(585\) −0.583555 + 5.20542i −0.0241270 + 0.215218i
\(586\) −19.5896 −0.809241
\(587\) 27.0638 15.6253i 1.11704 0.644924i 0.176397 0.984319i \(-0.443556\pi\)
0.940644 + 0.339395i \(0.110222\pi\)
\(588\) 21.6695 23.7145i 0.893635 0.977968i
\(589\) −10.4113 + 18.0329i −0.428989 + 0.743031i
\(590\) −1.51945 0.877257i −0.0625549 0.0361161i
\(591\) 40.4815 12.8259i 1.66519 0.527587i
\(592\) 1.80504 1.04214i 0.0741868 0.0428318i
\(593\) 26.3978i 1.08403i 0.840370 + 0.542013i \(0.182338\pi\)
−0.840370 + 0.542013i \(0.817662\pi\)
\(594\) 15.3905 6.45055i 0.631478 0.264669i
\(595\) −10.2860 −0.421684
\(596\) 8.19151 4.72937i 0.335537 0.193723i
\(597\) −7.07864 22.3418i −0.289709 0.914389i
\(598\) −22.1562 4.53043i −0.906033 0.185263i
\(599\) 3.40524 5.89806i 0.139135 0.240988i −0.788035 0.615631i \(-0.788901\pi\)
0.927169 + 0.374643i \(0.122235\pi\)
\(600\) −6.09332 5.56788i −0.248759 0.227308i
\(601\) −4.82516 8.35742i −0.196822 0.340906i 0.750674 0.660673i \(-0.229729\pi\)
−0.947496 + 0.319766i \(0.896396\pi\)
\(602\) 47.8516 1.95028
\(603\) −3.23267 + 0.291916i −0.131644 + 0.0118877i
\(604\) 1.33164i 0.0541836i
\(605\) 0.287730 0.166121i 0.0116979 0.00675377i
\(606\) −2.55068 + 11.5818i −0.103614 + 0.470480i
\(607\) −13.7896 + 23.8842i −0.559702 + 0.969432i 0.437819 + 0.899063i \(0.355751\pi\)
−0.997521 + 0.0703688i \(0.977582\pi\)
\(608\) −1.60576 + 2.78126i −0.0651223 + 0.112795i
\(609\) 8.64718 39.2642i 0.350402 1.59106i
\(610\) −0.242546 0.420102i −0.00982041 0.0170094i
\(611\) −6.02428 18.0637i −0.243716 0.730779i
\(612\) 1.13385 + 12.5563i 0.0458333 + 0.507557i
\(613\) 16.0314i 0.647502i 0.946142 + 0.323751i \(0.104944\pi\)
−0.946142 + 0.323751i \(0.895056\pi\)
\(614\) 0.630320 + 1.09175i 0.0254377 + 0.0440593i
\(615\) −6.25424 + 6.84446i −0.252195 + 0.275995i
\(616\) 14.0576 + 8.11614i 0.566395 + 0.327009i
\(617\) 11.4362 + 6.60269i 0.460404 + 0.265814i 0.712214 0.701962i \(-0.247693\pi\)
−0.251810 + 0.967777i \(0.581026\pi\)
\(618\) −5.87020 + 1.85988i −0.236134 + 0.0748152i
\(619\) 1.53649 0.887091i 0.0617566 0.0356552i −0.468804 0.883302i \(-0.655315\pi\)
0.530560 + 0.847647i \(0.321982\pi\)
\(620\) 3.13977 0.126096
\(621\) 30.0578 12.5980i 1.20618 0.505542i
\(622\) 17.5844i 0.705072i
\(623\) 21.3020 + 36.8961i 0.853446 + 1.47821i
\(624\) 3.67280 + 5.05080i 0.147030 + 0.202194i
\(625\) −10.7687 + 18.6520i −0.430749 + 0.746079i
\(626\) −0.177891 0.102706i −0.00710997 0.00410494i
\(627\) −12.0505 + 13.1877i −0.481251 + 0.526667i
\(628\) −2.92122 5.05970i −0.116569 0.201904i
\(629\) 8.75911i 0.349249i
\(630\) 3.08463 6.66351i 0.122895 0.265480i
\(631\) 30.2211i 1.20308i 0.798841 + 0.601542i \(0.205447\pi\)
−0.798841 + 0.601542i \(0.794553\pi\)
\(632\) 6.78649 3.91818i 0.269952 0.155857i
\(633\) −40.3751 8.89184i −1.60476 0.353419i
\(634\) −9.04030 + 15.6583i −0.359036 + 0.621869i
\(635\) 1.91362 + 1.10483i 0.0759397 + 0.0438438i
\(636\) 10.8594 + 2.39157i 0.430602 + 0.0948319i
\(637\) 50.0399 + 44.3594i 1.98265 + 1.75759i
\(638\) 14.7491 0.583921
\(639\) 7.99942 + 11.3568i 0.316452 + 0.449266i
\(640\) 0.484256 0.0191419
\(641\) 0.301673 + 0.522512i 0.0119154 + 0.0206380i 0.871922 0.489646i \(-0.162874\pi\)
−0.860006 + 0.510284i \(0.829540\pi\)
\(642\) 1.80789 + 1.65199i 0.0713516 + 0.0651988i
\(643\) 27.0250 + 15.6029i 1.06576 + 0.615317i 0.927020 0.375012i \(-0.122361\pi\)
0.138740 + 0.990329i \(0.455695\pi\)
\(644\) 27.4546 + 15.8509i 1.08186 + 0.624615i
\(645\) 7.56993 2.39841i 0.298066 0.0944373i
\(646\) −6.74815 11.6881i −0.265502 0.459864i
\(647\) −48.8937 −1.92221 −0.961105 0.276182i \(-0.910931\pi\)
−0.961105 + 0.276182i \(0.910931\pi\)
\(648\) −8.47428 3.03092i −0.332901 0.119066i
\(649\) −11.6357 −0.456742
\(650\) 11.3980 12.8575i 0.447064 0.504314i
\(651\) −17.1439 54.1102i −0.671923 2.12074i
\(652\) 13.1064 + 7.56698i 0.513286 + 0.296346i
\(653\) −19.1944 + 33.2457i −0.751135 + 1.30100i 0.196138 + 0.980576i \(0.437160\pi\)
−0.947273 + 0.320427i \(0.896173\pi\)
\(654\) −5.81295 + 6.36152i −0.227304 + 0.248755i
\(655\) 1.03564 0.597926i 0.0404658 0.0233629i
\(656\) 11.0540i 0.431585i
\(657\) −0.562371 0.798397i −0.0219402 0.0311484i
\(658\) 26.6934i 1.04062i
\(659\) 20.9568 + 36.2983i 0.816362 + 1.41398i 0.908346 + 0.418220i \(0.137346\pi\)
−0.0919840 + 0.995760i \(0.529321\pi\)
\(660\) 2.63065 + 0.579350i 0.102398 + 0.0225512i
\(661\) 10.5208 + 6.07418i 0.409211 + 0.236258i 0.690451 0.723379i \(-0.257412\pi\)
−0.281240 + 0.959638i \(0.590746\pi\)
\(662\) 2.09751 3.63300i 0.0815221 0.141200i
\(663\) −26.0994 + 2.75402i −1.01362 + 0.106957i
\(664\) 2.93306 + 5.08022i 0.113825 + 0.197151i
\(665\) 7.86058i 0.304820i
\(666\) −5.67437 2.62674i −0.219877 0.101784i
\(667\) 28.8051 1.11534
\(668\) 10.4155 6.01341i 0.402989 0.232666i
\(669\) −16.4558 15.0367i −0.636216 0.581353i
\(670\) −0.453742 0.261968i −0.0175296 0.0101207i
\(671\) −2.78607 1.60854i −0.107555 0.0620969i
\(672\) −2.64416 8.34557i −0.102001 0.321938i
\(673\) −18.3252 31.7403i −0.706386 1.22350i −0.966189 0.257835i \(-0.916991\pi\)
0.259803 0.965662i \(-0.416342\pi\)
\(674\) 13.7608i 0.530047i
\(675\) −3.12931 + 24.5637i −0.120447 + 0.945458i
\(676\) −10.3976 + 7.80315i −0.399909 + 0.300121i
\(677\) −19.2964 33.4223i −0.741620 1.28452i −0.951757 0.306851i \(-0.900725\pi\)
0.210138 0.977672i \(-0.432609\pi\)
\(678\) 21.6109 6.84705i 0.829960 0.262959i
\(679\) 32.9811 57.1249i 1.26570 2.19225i
\(680\) −1.01753 + 1.76242i −0.0390206 + 0.0675856i
\(681\) −23.0860 21.0952i −0.884656 0.808369i
\(682\) 18.0329 10.4113i 0.690514 0.398669i
\(683\) 31.4038i 1.20163i −0.799387 0.600816i \(-0.794842\pi\)
0.799387 0.600816i \(-0.205158\pi\)
\(684\) 9.59554 0.866495i 0.366895 0.0331313i
\(685\) −9.49644 −0.362840
\(686\) −29.1808 50.5426i −1.11413 1.92972i
\(687\) 7.88772 35.8157i 0.300935 1.36645i
\(688\) 4.73367 8.19896i 0.180470 0.312583i
\(689\) −4.63714 + 22.6780i −0.176661 + 0.863965i
\(690\) 5.13770 + 1.13148i 0.195589 + 0.0430747i
\(691\) −16.6786 + 9.62941i −0.634485 + 0.366320i −0.782487 0.622667i \(-0.786049\pi\)
0.148002 + 0.988987i \(0.452716\pi\)
\(692\) −8.85863 −0.336755
\(693\) −4.37959 48.4995i −0.166367 1.84234i
\(694\) 23.8702i 0.906100i
\(695\) −0.162465 + 0.0937995i −0.00616266 + 0.00355802i
\(696\) −5.87217 5.36580i −0.222584 0.203390i
\(697\) −40.2301 23.2269i −1.52383 0.879781i
\(698\) −9.67391 + 16.7557i −0.366163 + 0.634213i
\(699\) 15.2030 + 47.9842i 0.575031 + 1.81493i
\(700\) −20.8596 + 12.0433i −0.788420 + 0.455194i
\(701\) −26.7781 −1.01139 −0.505697 0.862711i \(-0.668765\pi\)
−0.505697 + 0.862711i \(0.668765\pi\)
\(702\) 6.04275 17.7337i 0.228069 0.669316i
\(703\) 6.69374 0.252459
\(704\) 2.78126 1.60576i 0.104823 0.0605195i
\(705\) 1.33792 + 4.22279i 0.0503891 + 0.159039i
\(706\) −13.8914 + 24.0606i −0.522810 + 0.905533i
\(707\) 29.9709 + 17.3037i 1.12717 + 0.650773i
\(708\) 4.63263 + 4.23315i 0.174105 + 0.159091i
\(709\) −40.2439 + 23.2348i −1.51139 + 0.872602i −0.511479 + 0.859296i \(0.670902\pi\)
−0.999911 + 0.0133058i \(0.995764\pi\)
\(710\) 2.24230i 0.0841522i
\(711\) −21.3341 9.87587i −0.800092 0.370374i
\(712\) 8.42912 0.315895
\(713\) 35.2185 20.3334i 1.31894 0.761492i
\(714\) 35.9291 + 7.91271i 1.34461 + 0.296126i
\(715\) −1.12333 + 5.49369i −0.0420103 + 0.205452i
\(716\) 5.18521 8.98104i 0.193780 0.335637i
\(717\) −2.70789 + 12.2957i −0.101128 + 0.459190i
\(718\) 11.9152 + 20.6378i 0.444672 + 0.770195i
\(719\) −4.81378 −0.179524 −0.0897619 0.995963i \(-0.528611\pi\)
−0.0897619 + 0.995963i \(0.528611\pi\)
\(720\) −0.836592 1.18771i −0.0311779 0.0442632i
\(721\) 17.9693i 0.669213i
\(722\) 7.52237 4.34304i 0.279954 0.161631i
\(723\) 22.9009 + 20.9261i 0.851693 + 0.778249i
\(724\) 5.42035 9.38833i 0.201446 0.348914i
\(725\) −10.9429 + 18.9536i −0.406407 + 0.703918i
\(726\) −1.13284 + 0.358921i −0.0420436 + 0.0133208i
\(727\) −6.35915 11.0144i −0.235848 0.408501i 0.723671 0.690145i \(-0.242453\pi\)
−0.959519 + 0.281645i \(0.909120\pi\)
\(728\) 17.2878 5.76550i 0.640727 0.213684i
\(729\) 7.20624 + 26.0206i 0.266898 + 0.963725i
\(730\) 0.157637i 0.00583442i
\(731\) 19.8930 + 34.4558i 0.735771 + 1.27439i
\(732\) 0.524046 + 1.65401i 0.0193693 + 0.0611340i
\(733\) 3.68483 + 2.12744i 0.136102 + 0.0785787i 0.566505 0.824058i \(-0.308295\pi\)
−0.430403 + 0.902637i \(0.641628\pi\)
\(734\) 8.74067 + 5.04643i 0.322624 + 0.186267i
\(735\) −11.4839 10.4936i −0.423589 0.387062i
\(736\) 5.43186 3.13608i 0.200221 0.115598i
\(737\) −3.47468 −0.127991
\(738\) 27.1114 19.0966i 0.997986 0.702956i
\(739\) 9.71484i 0.357366i −0.983907 0.178683i \(-0.942816\pi\)
0.983907 0.178683i \(-0.0571837\pi\)
\(740\) −0.504664 0.874103i −0.0185518 0.0321327i
\(741\) 2.10463 + 19.9453i 0.0773156 + 0.732707i
\(742\) 16.2243 28.1013i 0.595613 1.03163i
\(743\) −10.6739 6.16261i −0.391589 0.226084i 0.291259 0.956644i \(-0.405926\pi\)
−0.682848 + 0.730560i \(0.739259\pi\)
\(744\) −10.9673 2.41533i −0.402080 0.0885504i
\(745\) −2.29023 3.96679i −0.0839074 0.145332i
\(746\) 8.54741i 0.312943i
\(747\) 7.39285 15.9702i 0.270490 0.584321i
\(748\) 13.4963i 0.493474i
\(749\) 6.18904 3.57325i 0.226143 0.130564i
\(750\) −5.52524 + 6.04666i −0.201753 + 0.220793i
\(751\) 1.43490 2.48532i 0.0523603 0.0906908i −0.838657 0.544660i \(-0.816659\pi\)
0.891018 + 0.453969i \(0.149992\pi\)
\(752\) 4.57369 + 2.64062i 0.166785 + 0.0962935i
\(753\) −2.01254 6.35204i −0.0733410 0.231481i
\(754\) 10.9843 12.3909i 0.400024 0.451249i
\(755\) −0.644854 −0.0234686
\(756\) −15.9007 + 20.9028i −0.578304 + 0.760229i
\(757\) 33.1438 1.20463 0.602316 0.798258i \(-0.294245\pi\)
0.602316 + 0.798258i \(0.294245\pi\)
\(758\) −15.3563 26.5978i −0.557764 0.966076i
\(759\) 33.2597 10.5378i 1.20725 0.382497i
\(760\) 1.34684 + 0.777601i 0.0488552 + 0.0282065i
\(761\) 37.0264 + 21.3772i 1.34221 + 0.774923i 0.987131 0.159915i \(-0.0511220\pi\)
0.355075 + 0.934838i \(0.384455\pi\)
\(762\) −5.83440 5.33128i −0.211358 0.193132i
\(763\) 12.5734 + 21.7778i 0.455188 + 0.788408i
\(764\) −11.2580 −0.407300
\(765\) 6.08045 0.549076i 0.219839 0.0198519i
\(766\) −2.88551 −0.104258
\(767\) −8.66563 + 9.77532i −0.312898 + 0.352966i
\(768\) −1.69152 0.372524i −0.0610373 0.0134423i
\(769\) 41.6797 + 24.0638i 1.50301 + 0.867762i 0.999994 + 0.00348401i \(0.00110900\pi\)
0.503014 + 0.864278i \(0.332224\pi\)
\(770\) 3.93029 6.80746i 0.141638 0.245324i
\(771\) 24.9795 + 5.50125i 0.899614 + 0.198123i
\(772\) 6.60401 3.81283i 0.237684 0.137227i
\(773\) 21.3661i 0.768484i −0.923232 0.384242i \(-0.874463\pi\)
0.923232 0.384242i \(-0.125537\pi\)
\(774\) −28.2869 + 2.55436i −1.01675 + 0.0918147i
\(775\) 30.8980i 1.10989i
\(776\) −6.52525 11.3021i −0.234243 0.405721i
\(777\) −12.3085 + 13.4701i −0.441566 + 0.483237i
\(778\) 10.3018 + 5.94776i 0.369338 + 0.213238i
\(779\) −17.7501 + 30.7440i −0.635962 + 1.10152i
\(780\) 2.44588 1.77857i 0.0875765 0.0636832i
\(781\) 7.43535 + 12.8784i 0.266058 + 0.460826i
\(782\) 26.3585i 0.942578i
\(783\) −3.01573 + 23.6722i −0.107774 + 0.845975i
\(784\) −18.5467 −0.662383
\(785\) −2.45019 + 1.41462i −0.0874510 + 0.0504898i
\(786\) −4.07747 + 1.29188i −0.145439 + 0.0460799i
\(787\) −29.5928 17.0854i −1.05487 0.609029i −0.130860 0.991401i \(-0.541774\pi\)
−0.924008 + 0.382372i \(0.875107\pi\)
\(788\) −21.2324 12.2585i −0.756372 0.436691i
\(789\) 10.2379 11.2040i 0.364477 0.398873i
\(790\) −1.89740 3.28640i −0.0675066 0.116925i
\(791\) 66.1533i 2.35214i
\(792\) −8.74323 4.04736i −0.310677 0.143817i
\(793\) −3.42626 + 1.14266i −0.121670 + 0.0405772i
\(794\) 11.9011 + 20.6132i 0.422353 + 0.731537i
\(795\) 1.15813 5.25871i 0.0410747 0.186507i
\(796\) −6.76550 + 11.7182i −0.239797 + 0.415340i
\(797\) −6.26917 + 10.8585i −0.222066 + 0.384629i −0.955435 0.295201i \(-0.904613\pi\)
0.733369 + 0.679830i \(0.237947\pi\)
\(798\) 6.04691 27.4571i 0.214058 0.971973i
\(799\) −19.2207 + 11.0971i −0.679980 + 0.392587i
\(800\) 4.76550i 0.168486i
\(801\) −14.5620 20.6736i −0.514523 0.730467i
\(802\) −8.99705 −0.317697
\(803\) −0.522716 0.905371i −0.0184463 0.0319498i
\(804\) 1.38340 + 1.26411i 0.0487889 + 0.0445817i
\(805\) 7.67592 13.2951i 0.270540 0.468590i
\(806\) 4.68322 22.9034i 0.164959 0.806737i
\(807\) −4.65982 14.7075i −0.164033 0.517727i
\(808\) 5.92969 3.42351i 0.208606 0.120439i
\(809\) −23.7653 −0.835543 −0.417772 0.908552i \(-0.637189\pi\)
−0.417772 + 0.908552i \(0.637189\pi\)
\(810\) −1.46774 + 4.10372i −0.0515712 + 0.144190i
\(811\) 12.1844i 0.427853i −0.976850 0.213926i \(-0.931375\pi\)
0.976850 0.213926i \(-0.0686253\pi\)
\(812\) −20.1025 + 11.6062i −0.705461 + 0.407298i
\(813\) 5.92024 1.87573i 0.207632 0.0657848i
\(814\) −5.79695 3.34687i −0.203183 0.117308i
\(815\) 3.66435 6.34685i 0.128357 0.222320i
\(816\) 4.91003 5.37340i 0.171886 0.188107i
\(817\) 26.3312 15.2023i 0.921212 0.531862i
\(818\) −32.1404 −1.12376
\(819\) −44.0067 32.4403i −1.53772 1.13356i
\(820\) 5.35295 0.186933
\(821\) −14.8532 + 8.57549i −0.518379 + 0.299287i −0.736271 0.676686i \(-0.763415\pi\)
0.217892 + 0.975973i \(0.430082\pi\)
\(822\) 33.1713 + 7.30534i 1.15698 + 0.254803i
\(823\) −19.0983 + 33.0792i −0.665725 + 1.15307i 0.313363 + 0.949633i \(0.398544\pi\)
−0.979088 + 0.203436i \(0.934789\pi\)
\(824\) 3.07889 + 1.77760i 0.107258 + 0.0619257i
\(825\) −5.70131 + 25.8878i −0.198494 + 0.901299i
\(826\) 15.8592 9.15629i 0.551810 0.318588i
\(827\) 16.3182i 0.567441i −0.958907 0.283721i \(-0.908431\pi\)
0.958907 0.283721i \(-0.0915688\pi\)
\(828\) −17.0757 7.90457i −0.593420 0.274703i
\(829\) 13.6052 0.472529 0.236265 0.971689i \(-0.424077\pi\)
0.236265 + 0.971689i \(0.424077\pi\)
\(830\) 2.46012 1.42035i 0.0853922 0.0493012i
\(831\) −17.3846 + 19.0252i −0.603065 + 0.659977i
\(832\) 0.722307 3.53246i 0.0250415 0.122466i
\(833\) 38.9709 67.4996i 1.35026 2.33872i
\(834\) 0.639652 0.202663i 0.0221493 0.00701766i
\(835\) −2.91203 5.04378i −0.100775 0.174547i
\(836\) 10.3139 0.356714
\(837\) 13.0229 + 31.0715i 0.450137 + 1.07399i
\(838\) 3.37377i 0.116545i
\(839\) −43.9792 + 25.3914i −1.51833 + 0.876609i −0.518563 + 0.855039i \(0.673533\pi\)
−0.999767 + 0.0215696i \(0.993134\pi\)
\(840\) −4.04139 + 1.28045i −0.139441 + 0.0441797i
\(841\) 3.95431 6.84907i 0.136356 0.236175i
\(842\) −1.30842 + 2.26626i −0.0450913 + 0.0781004i
\(843\) 21.1123 + 19.2918i 0.727148 + 0.664443i
\(844\) 11.9346 + 20.6713i 0.410805 + 0.711535i
\(845\) 3.77872 + 5.03512i 0.129992 + 0.173213i
\(846\) −1.42492 15.7795i −0.0489897 0.542511i
\(847\) 3.46774i 0.119153i
\(848\) −3.20995 5.55980i −0.110230 0.190924i
\(849\) 0.906087 + 0.199548i 0.0310968 + 0.00684848i
\(850\) −17.3437 10.0134i −0.594884 0.343456i
\(851\) −11.3215 6.53649i −0.388097 0.224068i
\(852\) 1.72494 7.83242i 0.0590955 0.268334i
\(853\) 31.1360 17.9764i 1.06608 0.615499i 0.138969 0.990297i \(-0.455621\pi\)
0.927106 + 0.374798i \(0.122288\pi\)
\(854\) 5.06311 0.173256
\(855\) −0.419605 4.64670i −0.0143502 0.158914i
\(856\) 1.41392i 0.0483268i
\(857\) 2.28591 + 3.95932i 0.0780853 + 0.135248i 0.902424 0.430849i \(-0.141786\pi\)
−0.824339 + 0.566097i \(0.808453\pi\)
\(858\) 8.14996 18.3254i 0.278235 0.625619i
\(859\) −5.82450 + 10.0883i −0.198729 + 0.344209i −0.948117 0.317923i \(-0.897015\pi\)
0.749387 + 0.662132i \(0.230348\pi\)
\(860\) −3.97040 2.29231i −0.135389 0.0781671i
\(861\) −29.2284 92.2517i −0.996103 3.14393i
\(862\) 0.625564 + 1.08351i 0.0213068 + 0.0369044i
\(863\) 26.2523i 0.893640i 0.894624 + 0.446820i \(0.147444\pi\)
−0.894624 + 0.446820i \(0.852556\pi\)
\(864\) 2.00856 + 4.79225i 0.0683327 + 0.163036i
\(865\) 4.28985i 0.145859i
\(866\) −4.13195 + 2.38558i −0.140409 + 0.0810655i
\(867\) 0.345597 + 1.09078i 0.0117371 + 0.0370450i
\(868\) −16.3855 + 28.3806i −0.556161 + 0.963299i
\(869\) −21.7950 12.5834i −0.739345 0.426861i
\(870\) −2.59842 + 2.84363i −0.0880946 + 0.0964082i
\(871\) −2.58775 + 2.91912i −0.0876825 + 0.0989107i
\(872\) 4.97525 0.168483
\(873\) −16.4470 + 35.5294i −0.556648 + 1.20249i
\(874\) 20.1432 0.681355
\(875\) 11.9511 + 20.6999i 0.404020 + 0.699783i
\(876\) −0.121266 + 0.550630i −0.00409719 + 0.0186041i
\(877\) −40.5146 23.3911i −1.36808 0.789862i −0.377398 0.926051i \(-0.623181\pi\)
−0.990683 + 0.136189i \(0.956515\pi\)
\(878\) −29.1867 16.8509i −0.985003 0.568692i
\(879\) 7.29762 33.1362i 0.246142 1.11766i
\(880\) −0.777601 1.34684i −0.0262129 0.0454021i
\(881\) 52.3698 1.76438 0.882192 0.470889i \(-0.156067\pi\)
0.882192 + 0.470889i \(0.156067\pi\)
\(882\) 32.0410 + 45.4885i 1.07888 + 1.53168i
\(883\) −28.7233 −0.966617 −0.483309 0.875450i \(-0.660565\pi\)
−0.483309 + 0.875450i \(0.660565\pi\)
\(884\) 11.3384 + 10.0513i 0.381352 + 0.338061i
\(885\) 2.04993 2.24338i 0.0689075 0.0754104i
\(886\) 4.65706 + 2.68876i 0.156457 + 0.0903305i
\(887\) −6.01188 + 10.4129i −0.201859 + 0.349631i −0.949128 0.314892i \(-0.898032\pi\)
0.747268 + 0.664523i \(0.231365\pi\)
\(888\) 1.09038 + 3.44148i 0.0365907 + 0.115489i
\(889\) −19.9732 + 11.5316i −0.669881 + 0.386756i
\(890\) 4.08185i 0.136824i
\(891\) 5.17790 + 28.4362i 0.173466 + 0.952648i
\(892\) 12.8698i 0.430913i
\(893\) 8.48043 + 14.6885i 0.283787 + 0.491533i
\(894\) 4.94827 + 15.6179i 0.165495 + 0.522340i
\(895\) −4.34912 2.51097i −0.145375 0.0839324i
\(896\) −2.52719 + 4.37722i −0.0844274 + 0.146233i
\(897\) 15.9170 35.7898i 0.531453 1.19499i
\(898\) −8.39064 14.5330i −0.279999 0.484973i
\(899\) 29.7766i 0.993105i
\(900\) 11.6881 8.23278i 0.389602 0.274426i
\(901\) 26.9793 0.898812
\(902\) 30.7440 17.7501i 1.02366 0.591012i
\(903\) −17.8259 + 80.9417i −0.593207 + 2.69357i
\(904\) −11.3348 6.54415i −0.376990 0.217655i
\(905\) −4.54635 2.62484i −0.151126 0.0872526i
\(906\) 2.25249 + 0.496067i 0.0748339 + 0.0164807i
\(907\) −13.8974 24.0710i −0.461456 0.799265i 0.537578 0.843214i \(-0.319339\pi\)
−0.999034 + 0.0439492i \(0.986006\pi\)
\(908\) 18.0552i 0.599182i
\(909\) −18.6407 8.62903i −0.618272 0.286207i
\(910\) −2.79198 8.37170i −0.0925531 0.277519i
\(911\) 10.3296 + 17.8914i 0.342235 + 0.592769i 0.984847 0.173423i \(-0.0554827\pi\)
−0.642612 + 0.766191i \(0.722149\pi\)
\(912\) −4.10637 3.75226i −0.135975 0.124250i
\(913\) 9.41962 16.3153i 0.311744 0.539956i
\(914\) −11.8396 + 20.5067i −0.391618 + 0.678302i
\(915\) 0.800964 0.253772i 0.0264791 0.00838946i
\(916\) −18.3370 + 10.5869i −0.605871 + 0.349800i
\(917\) 12.4816i 0.412179i
\(918\) −21.6615 2.75958i −0.714937 0.0910798i
\(919\) 56.3658 1.85933 0.929667 0.368400i \(-0.120094\pi\)
0.929667 + 0.368400i \(0.120094\pi\)
\(920\) −1.51867 2.63041i −0.0500690 0.0867220i
\(921\) −2.08152 + 0.659495i −0.0685883 + 0.0217311i
\(922\) −17.2311 + 29.8451i −0.567476 + 0.982898i
\(923\) 16.3567 + 3.34458i 0.538389 + 0.110088i
\(924\) −18.9654 + 20.7551i −0.623914 + 0.682794i
\(925\) 8.60193 4.96633i 0.282830 0.163292i
\(926\) 22.4773 0.738649
\(927\) −0.959221 10.6224i −0.0315049 0.348885i
\(928\) 4.59254i 0.150757i
\(929\) −1.75111 + 1.01100i −0.0574520 + 0.0331699i −0.528451 0.848964i \(-0.677227\pi\)
0.470999 + 0.882134i \(0.343894\pi\)
\(930\) −1.16964 + 5.31097i −0.0383540 + 0.174153i
\(931\) −51.5834 29.7817i −1.69058 0.976055i
\(932\) 14.5305 25.1675i 0.475962 0.824390i
\(933\) 29.7443 + 6.55063i 0.973786 + 0.214458i
\(934\) −3.84196 + 2.21816i −0.125713 + 0.0725804i
\(935\) 6.53566 0.213739
\(936\) −9.91171 + 4.33105i −0.323974 + 0.141565i
\(937\) −15.3243 −0.500622 −0.250311 0.968166i \(-0.580533\pi\)
−0.250311 + 0.968166i \(0.580533\pi\)
\(938\) 4.73589 2.73427i 0.154632 0.0892770i
\(939\) 0.239997 0.262646i 0.00783200 0.00857112i
\(940\) 1.27874 2.21484i 0.0417078 0.0722400i
\(941\) −35.8714 20.7104i −1.16938 0.675139i −0.215842 0.976428i \(-0.569250\pi\)
−0.953533 + 0.301289i \(0.902583\pi\)
\(942\) 9.64678 3.05643i 0.314309 0.0995837i
\(943\) 60.0435 34.6661i 1.95529 1.12888i
\(944\) 3.62311i 0.117922i
\(945\) 10.1223 + 7.70002i 0.329279 + 0.250482i
\(946\) −30.4047 −0.988541
\(947\) −49.2660 + 28.4437i −1.60093 + 0.924297i −0.609628 + 0.792687i \(0.708681\pi\)
−0.991302 + 0.131610i \(0.957985\pi\)
\(948\) 4.09954 + 12.9391i 0.133147 + 0.420242i
\(949\) −1.14990 0.235129i −0.0373274 0.00763261i
\(950\) −7.65226 + 13.2541i −0.248272 + 0.430020i
\(951\) −23.1185 21.1249i −0.749667 0.685021i
\(952\) −10.6204 18.3951i −0.344209 0.596187i
\(953\) −40.5931 −1.31494 −0.657470 0.753481i \(-0.728373\pi\)
−0.657470 + 0.753481i \(0.728373\pi\)
\(954\) −8.09075 + 17.4779i −0.261948 + 0.565867i
\(955\) 5.45175i 0.176415i
\(956\) 6.29516 3.63451i 0.203600 0.117548i
\(957\) −5.49438 + 24.9483i −0.177608 + 0.806463i
\(958\) 5.90827 10.2334i 0.190888 0.330627i
\(959\) 49.5591 85.8389i 1.60035 2.77188i
\(960\) −0.180397 + 0.819127i −0.00582229 + 0.0264372i
\(961\) 5.51914 + 9.55944i 0.178037 + 0.308369i
\(962\) −7.12899 + 2.37753i −0.229848 + 0.0766547i
\(963\) −3.46785 + 2.44266i −0.111750 + 0.0787138i
\(964\) 17.9104i 0.576856i
\(965\) −1.84638 3.19803i −0.0594372 0.102948i
\(966\) −37.0396 + 40.5351i −1.19173 + 1.30420i
\(967\) 43.2958 + 24.9968i 1.39230 + 0.803844i 0.993569 0.113225i \(-0.0361182\pi\)
0.398729 + 0.917069i \(0.369452\pi\)
\(968\) 0.594169 + 0.343044i 0.0190973 + 0.0110258i
\(969\) 22.2845 7.06049i 0.715882 0.226816i
\(970\) −5.47310 + 3.15989i −0.175730 + 0.101458i
\(971\) −31.1467 −0.999546 −0.499773 0.866156i \(-0.666583\pi\)
−0.499773 + 0.866156i \(0.666583\pi\)
\(972\) 8.28373 13.2053i 0.265701 0.423560i
\(973\) 1.95805i 0.0627721i
\(974\) 12.9186 + 22.3758i 0.413940 + 0.716965i
\(975\) 17.5027 + 24.0696i 0.560535 + 0.770843i
\(976\) 0.500864 0.867521i 0.0160323 0.0277687i
\(977\) −5.97565 3.45004i −0.191178 0.110377i 0.401356 0.915922i \(-0.368539\pi\)
−0.592534 + 0.805546i \(0.701872\pi\)
\(978\) −17.6821 + 19.3508i −0.565411 + 0.618770i
\(979\) −13.5352 23.4436i −0.432586 0.749262i
\(980\) 8.98136i 0.286899i
\(981\) −8.59515 12.2025i −0.274422 0.389596i
\(982\) 11.1999i 0.357403i
\(983\) −45.4067 + 26.2156i −1.44825 + 0.836147i −0.998377 0.0569461i \(-0.981864\pi\)
−0.449872 + 0.893093i \(0.648530\pi\)
\(984\) −18.6980 4.11787i −0.596069 0.131273i
\(985\) −5.93626 + 10.2819i −0.189145 + 0.327608i
\(986\) −16.7142 9.64996i −0.532289 0.307317i
\(987\) −45.1523 9.94393i −1.43721 0.316519i
\(988\) 7.68122 8.66485i 0.244372 0.275666i
\(989\) −59.3808 −1.88820
\(990\) −1.95996 + 4.23396i −0.0622916 + 0.134564i
\(991\) −26.0277 −0.826799 −0.413399 0.910550i \(-0.635659\pi\)
−0.413399 + 0.910550i \(0.635659\pi\)
\(992\) 3.24185 + 5.61504i 0.102929 + 0.178278i
\(993\) 5.36390 + 4.90135i 0.170218 + 0.155540i
\(994\) −20.2683 11.7019i −0.642872 0.371163i
\(995\) 5.67460 + 3.27623i 0.179897 + 0.103864i
\(996\) −9.68590 + 3.06882i −0.306910 + 0.0972393i
\(997\) −13.6237 23.5970i −0.431468 0.747324i 0.565532 0.824726i \(-0.308671\pi\)
−0.997000 + 0.0774021i \(0.975337\pi\)
\(998\) −15.4596 −0.489367
\(999\) 6.55702 8.61975i 0.207455 0.272717i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.2.t.a.103.12 yes 28
3.2 odd 2 702.2.t.a.415.4 28
9.2 odd 6 702.2.t.a.181.11 28
9.4 even 3 2106.2.b.c.649.11 14
9.5 odd 6 2106.2.b.d.649.4 14
9.7 even 3 inner 234.2.t.a.25.5 28
13.12 even 2 inner 234.2.t.a.103.5 yes 28
39.38 odd 2 702.2.t.a.415.11 28
117.25 even 6 inner 234.2.t.a.25.12 yes 28
117.38 odd 6 702.2.t.a.181.4 28
117.77 odd 6 2106.2.b.d.649.11 14
117.103 even 6 2106.2.b.c.649.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.t.a.25.5 28 9.7 even 3 inner
234.2.t.a.25.12 yes 28 117.25 even 6 inner
234.2.t.a.103.5 yes 28 13.12 even 2 inner
234.2.t.a.103.12 yes 28 1.1 even 1 trivial
702.2.t.a.181.4 28 117.38 odd 6
702.2.t.a.181.11 28 9.2 odd 6
702.2.t.a.415.4 28 3.2 odd 2
702.2.t.a.415.11 28 39.38 odd 2
2106.2.b.c.649.4 14 117.103 even 6
2106.2.b.c.649.11 14 9.4 even 3
2106.2.b.d.649.4 14 9.5 odd 6
2106.2.b.d.649.11 14 117.77 odd 6