Properties

Label 234.2.x
Level $234$
Weight $2$
Character orbit 234.x
Rep. character $\chi_{234}(71,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $24$
Newform subspaces $2$
Sturm bound $84$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.x (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 2 \)
Sturm bound: \(84\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(234, [\chi])\).

Total New Old
Modular forms 200 24 176
Cusp forms 136 24 112
Eisenstein series 64 0 64

Trace form

\( 24 q + 12 q^{10} + 36 q^{13} + 12 q^{16} - 48 q^{31} - 36 q^{34} - 36 q^{37} - 48 q^{43} - 48 q^{46} - 48 q^{49} + 48 q^{55} - 12 q^{58} + 36 q^{61} - 60 q^{73} + 96 q^{82} - 96 q^{85} + 48 q^{91} + 108 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(234, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
234.2.x.a 234.x 39.k $8$ $1.868$ \(\Q(\zeta_{24})\) None 234.2.x.a \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{12}]$ \(q+\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(-\zeta_{24}-\zeta_{24}^{5}+\cdots)q^{5}+\cdots\)
234.2.x.b 234.x 39.k $16$ $1.868$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 234.2.x.b \(0\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{12}]$ \(q-\beta _{3}q^{2}+\beta _{4}q^{4}+\beta _{14}q^{5}+(-1-\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(234, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(234, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)