Defining parameters
Level: | \( N \) | \(=\) | \( 234 = 2 \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 234.x (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 39 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(84\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(234, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 200 | 24 | 176 |
Cusp forms | 136 | 24 | 112 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(234, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
234.2.x.a | $8$ | $1.868$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(16\) | \(q+\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(-\zeta_{24}-\zeta_{24}^{5}+\cdots)q^{5}+\cdots\) |
234.2.x.b | $16$ | $1.868$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-16\) | \(q-\beta _{3}q^{2}+\beta _{4}q^{4}+\beta _{14}q^{5}+(-1-\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(234, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(234, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)