Properties

Label 234.2.x
Level 234234
Weight 22
Character orbit 234.x
Rep. character χ234(71,)\chi_{234}(71,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 2424
Newform subspaces 22
Sturm bound 8484
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 234=23213 234 = 2 \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 234.x (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 39 39
Character field: Q(ζ12)\Q(\zeta_{12})
Newform subspaces: 2 2
Sturm bound: 8484
Trace bound: 11
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M2(234,[χ])M_{2}(234, [\chi]).

Total New Old
Modular forms 200 24 176
Cusp forms 136 24 112
Eisenstein series 64 0 64

Trace form

24q+12q10+36q13+12q1648q3136q3436q3748q4348q4648q49+48q5512q58+36q6160q73+96q8296q85+48q91+108q97+O(q100) 24 q + 12 q^{10} + 36 q^{13} + 12 q^{16} - 48 q^{31} - 36 q^{34} - 36 q^{37} - 48 q^{43} - 48 q^{46} - 48 q^{49} + 48 q^{55} - 12 q^{58} + 36 q^{61} - 60 q^{73} + 96 q^{82} - 96 q^{85} + 48 q^{91} + 108 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(234,[χ])S_{2}^{\mathrm{new}}(234, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
234.2.x.a 234.x 39.k 88 1.8681.868 Q(ζ24)\Q(\zeta_{24}) None 234.2.x.a 00 00 00 1616 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+ζ247q2ζ242q4+(ζ24ζ245+)q5+q+\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(-\zeta_{24}-\zeta_{24}^{5}+\cdots)q^{5}+\cdots
234.2.x.b 234.x 39.k 1616 1.8681.868 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 234.2.x.b 00 00 00 16-16 SU(2)[C12]\mathrm{SU}(2)[C_{12}] qβ3q2+β4q4+β14q5+(1β1+)q7+q-\beta _{3}q^{2}+\beta _{4}q^{4}+\beta _{14}q^{5}+(-1-\beta _{1}+\cdots)q^{7}+\cdots

Decomposition of S2old(234,[χ])S_{2}^{\mathrm{old}}(234, [\chi]) into lower level spaces

S2old(234,[χ]) S_{2}^{\mathrm{old}}(234, [\chi]) \simeq S2new(39,[χ])S_{2}^{\mathrm{new}}(39, [\chi])4^{\oplus 4}\oplusS2new(78,[χ])S_{2}^{\mathrm{new}}(78, [\chi])2^{\oplus 2}\oplusS2new(117,[χ])S_{2}^{\mathrm{new}}(117, [\chi])2^{\oplus 2}