Properties

Label 2352.4
Level 2352
Weight 4
Dimension 182381
Nonzero newspaces 32
Sturm bound 1204224
Trace bound 9

Downloads

Learn more

Defining parameters

Level: N N = 2352=24372 2352 = 2^{4} \cdot 3 \cdot 7^{2}
Weight: k k = 4 4
Nonzero newspaces: 32 32
Sturm bound: 12042241204224
Trace bound: 99

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ1(2352))M_{4}(\Gamma_1(2352)).

Total New Old
Modular forms 454944 183253 271691
Cusp forms 448224 182381 265843
Eisenstein series 6720 872 5848

Trace form

182381q50q3144q4+2q532q6108q7+84q8+42q9+8q1060q11164q12176q13+69q15424q1626q1744q181138q19+80q20++17216q99+O(q100) 182381 q - 50 q^{3} - 144 q^{4} + 2 q^{5} - 32 q^{6} - 108 q^{7} + 84 q^{8} + 42 q^{9} + 8 q^{10} - 60 q^{11} - 164 q^{12} - 176 q^{13} + 69 q^{15} - 424 q^{16} - 26 q^{17} - 44 q^{18} - 1138 q^{19} + 80 q^{20}+ \cdots + 17216 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ1(2352))S_{4}^{\mathrm{new}}(\Gamma_1(2352))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
2352.4.a χ2352(1,)\chi_{2352}(1, \cdot) 2352.4.a.a 1 1
2352.4.a.b 1
2352.4.a.c 1
2352.4.a.d 1
2352.4.a.e 1
2352.4.a.f 1
2352.4.a.g 1
2352.4.a.h 1
2352.4.a.i 1
2352.4.a.j 1
2352.4.a.k 1
2352.4.a.l 1
2352.4.a.m 1
2352.4.a.n 1
2352.4.a.o 1
2352.4.a.p 1
2352.4.a.q 1
2352.4.a.r 1
2352.4.a.s 1
2352.4.a.t 1
2352.4.a.u 1
2352.4.a.v 1
2352.4.a.w 1
2352.4.a.x 1
2352.4.a.y 1
2352.4.a.z 1
2352.4.a.ba 1
2352.4.a.bb 1
2352.4.a.bc 1
2352.4.a.bd 1
2352.4.a.be 1
2352.4.a.bf 1
2352.4.a.bg 1
2352.4.a.bh 1
2352.4.a.bi 1
2352.4.a.bj 1
2352.4.a.bk 1
2352.4.a.bl 2
2352.4.a.bm 2
2352.4.a.bn 2
2352.4.a.bo 2
2352.4.a.bp 2
2352.4.a.bq 2
2352.4.a.br 2
2352.4.a.bs 2
2352.4.a.bt 2
2352.4.a.bu 2
2352.4.a.bv 2
2352.4.a.bw 2
2352.4.a.bx 2
2352.4.a.by 2
2352.4.a.bz 2
2352.4.a.ca 2
2352.4.a.cb 2
2352.4.a.cc 2
2352.4.a.cd 2
2352.4.a.ce 2
2352.4.a.cf 2
2352.4.a.cg 3
2352.4.a.ch 3
2352.4.a.ci 3
2352.4.a.cj 3
2352.4.a.ck 4
2352.4.a.cl 4
2352.4.a.cm 4
2352.4.a.cn 4
2352.4.a.co 4
2352.4.a.cp 4
2352.4.a.cq 4
2352.4.a.cr 4
2352.4.b χ2352(1567,)\chi_{2352}(1567, \cdot) n/a 120 1
2352.4.c χ2352(1177,)\chi_{2352}(1177, \cdot) None 0 1
2352.4.h χ2352(2255,)\chi_{2352}(2255, \cdot) n/a 246 1
2352.4.i χ2352(2057,)\chi_{2352}(2057, \cdot) None 0 1
2352.4.j χ2352(1079,)\chi_{2352}(1079, \cdot) None 0 1
2352.4.k χ2352(881,)\chi_{2352}(881, \cdot) n/a 236 1
2352.4.p χ2352(391,)\chi_{2352}(391, \cdot) None 0 1
2352.4.q χ2352(961,)\chi_{2352}(961, \cdot) n/a 240 2
2352.4.s χ2352(491,)\chi_{2352}(491, \cdot) n/a 1948 2
2352.4.u χ2352(979,)\chi_{2352}(979, \cdot) n/a 960 2
2352.4.w χ2352(589,)\chi_{2352}(589, \cdot) n/a 984 2
2352.4.y χ2352(293,)\chi_{2352}(293, \cdot) n/a 1904 2
2352.4.bb χ2352(1207,)\chi_{2352}(1207, \cdot) None 0 2
2352.4.bc χ2352(1697,)\chi_{2352}(1697, \cdot) n/a 472 2
2352.4.bd χ2352(263,)\chi_{2352}(263, \cdot) None 0 2
2352.4.bi χ2352(521,)\chi_{2352}(521, \cdot) None 0 2
2352.4.bj χ2352(863,)\chi_{2352}(863, \cdot) n/a 480 2
2352.4.bk χ2352(361,)\chi_{2352}(361, \cdot) None 0 2
2352.4.bl χ2352(31,)\chi_{2352}(31, \cdot) n/a 240 2
2352.4.bo χ2352(337,)\chi_{2352}(337, \cdot) n/a 1008 6
2352.4.bp χ2352(509,)\chi_{2352}(509, \cdot) n/a 3808 4
2352.4.br χ2352(373,)\chi_{2352}(373, \cdot) n/a 1920 4
2352.4.bt χ2352(19,)\chi_{2352}(19, \cdot) n/a 1920 4
2352.4.bv χ2352(275,)\chi_{2352}(275, \cdot) n/a 3808 4
2352.4.bx χ2352(55,)\chi_{2352}(55, \cdot) None 0 6
2352.4.cc χ2352(209,)\chi_{2352}(209, \cdot) n/a 2004 6
2352.4.cd χ2352(71,)\chi_{2352}(71, \cdot) None 0 6
2352.4.ce χ2352(41,)\chi_{2352}(41, \cdot) None 0 6
2352.4.cf χ2352(239,)\chi_{2352}(239, \cdot) n/a 2016 6
2352.4.ck χ2352(169,)\chi_{2352}(169, \cdot) None 0 6
2352.4.cl χ2352(223,)\chi_{2352}(223, \cdot) n/a 1008 6
2352.4.cm χ2352(193,)\chi_{2352}(193, \cdot) n/a 2016 12
2352.4.cn χ2352(125,)\chi_{2352}(125, \cdot) n/a 16080 12
2352.4.cp χ2352(85,)\chi_{2352}(85, \cdot) n/a 8064 12
2352.4.cr χ2352(139,)\chi_{2352}(139, \cdot) n/a 8064 12
2352.4.ct χ2352(155,)\chi_{2352}(155, \cdot) n/a 16080 12
2352.4.cx χ2352(271,)\chi_{2352}(271, \cdot) n/a 2016 12
2352.4.cy χ2352(25,)\chi_{2352}(25, \cdot) None 0 12
2352.4.cz χ2352(95,)\chi_{2352}(95, \cdot) n/a 4032 12
2352.4.da χ2352(89,)\chi_{2352}(89, \cdot) None 0 12
2352.4.df χ2352(23,)\chi_{2352}(23, \cdot) None 0 12
2352.4.dg χ2352(17,)\chi_{2352}(17, \cdot) n/a 4008 12
2352.4.dh χ2352(103,)\chi_{2352}(103, \cdot) None 0 12
2352.4.dl χ2352(11,)\chi_{2352}(11, \cdot) n/a 32160 24
2352.4.dn χ2352(115,)\chi_{2352}(115, \cdot) n/a 16128 24
2352.4.dp χ2352(37,)\chi_{2352}(37, \cdot) n/a 16128 24
2352.4.dr χ2352(5,)\chi_{2352}(5, \cdot) n/a 32160 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S4old(Γ1(2352))S_{4}^{\mathrm{old}}(\Gamma_1(2352)) into lower level spaces

S4old(Γ1(2352)) S_{4}^{\mathrm{old}}(\Gamma_1(2352)) \cong S4new(Γ1(1))S_{4}^{\mathrm{new}}(\Gamma_1(1))30^{\oplus 30}\oplusS4new(Γ1(2))S_{4}^{\mathrm{new}}(\Gamma_1(2))24^{\oplus 24}\oplusS4new(Γ1(3))S_{4}^{\mathrm{new}}(\Gamma_1(3))15^{\oplus 15}\oplusS4new(Γ1(4))S_{4}^{\mathrm{new}}(\Gamma_1(4))18^{\oplus 18}\oplusS4new(Γ1(6))S_{4}^{\mathrm{new}}(\Gamma_1(6))12^{\oplus 12}\oplusS4new(Γ1(7))S_{4}^{\mathrm{new}}(\Gamma_1(7))20^{\oplus 20}\oplusS4new(Γ1(8))S_{4}^{\mathrm{new}}(\Gamma_1(8))12^{\oplus 12}\oplusS4new(Γ1(12))S_{4}^{\mathrm{new}}(\Gamma_1(12))9^{\oplus 9}\oplusS4new(Γ1(14))S_{4}^{\mathrm{new}}(\Gamma_1(14))16^{\oplus 16}\oplusS4new(Γ1(16))S_{4}^{\mathrm{new}}(\Gamma_1(16))6^{\oplus 6}\oplusS4new(Γ1(21))S_{4}^{\mathrm{new}}(\Gamma_1(21))10^{\oplus 10}\oplusS4new(Γ1(24))S_{4}^{\mathrm{new}}(\Gamma_1(24))6^{\oplus 6}\oplusS4new(Γ1(28))S_{4}^{\mathrm{new}}(\Gamma_1(28))12^{\oplus 12}\oplusS4new(Γ1(42))S_{4}^{\mathrm{new}}(\Gamma_1(42))8^{\oplus 8}\oplusS4new(Γ1(48))S_{4}^{\mathrm{new}}(\Gamma_1(48))3^{\oplus 3}\oplusS4new(Γ1(49))S_{4}^{\mathrm{new}}(\Gamma_1(49))10^{\oplus 10}\oplusS4new(Γ1(56))S_{4}^{\mathrm{new}}(\Gamma_1(56))8^{\oplus 8}\oplusS4new(Γ1(84))S_{4}^{\mathrm{new}}(\Gamma_1(84))6^{\oplus 6}\oplusS4new(Γ1(98))S_{4}^{\mathrm{new}}(\Gamma_1(98))8^{\oplus 8}\oplusS4new(Γ1(112))S_{4}^{\mathrm{new}}(\Gamma_1(112))4^{\oplus 4}\oplusS4new(Γ1(147))S_{4}^{\mathrm{new}}(\Gamma_1(147))5^{\oplus 5}\oplusS4new(Γ1(168))S_{4}^{\mathrm{new}}(\Gamma_1(168))4^{\oplus 4}\oplusS4new(Γ1(196))S_{4}^{\mathrm{new}}(\Gamma_1(196))6^{\oplus 6}\oplusS4new(Γ1(294))S_{4}^{\mathrm{new}}(\Gamma_1(294))4^{\oplus 4}\oplusS4new(Γ1(336))S_{4}^{\mathrm{new}}(\Gamma_1(336))2^{\oplus 2}\oplusS4new(Γ1(392))S_{4}^{\mathrm{new}}(\Gamma_1(392))4^{\oplus 4}\oplusS4new(Γ1(588))S_{4}^{\mathrm{new}}(\Gamma_1(588))3^{\oplus 3}\oplusS4new(Γ1(784))S_{4}^{\mathrm{new}}(\Gamma_1(784))2^{\oplus 2}\oplusS4new(Γ1(1176))S_{4}^{\mathrm{new}}(\Gamma_1(1176))2^{\oplus 2}