Properties

Label 2368.2.do
Level $2368$
Weight $2$
Character orbit 2368.do
Rep. character $\chi_{2368}(39,\cdot)$
Character field $\Q(\zeta_{72})$
Dimension $0$
Newform subspaces $0$
Sturm bound $608$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2368 = 2^{6} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2368.do (of order \(72\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1184 \)
Character field: \(\Q(\zeta_{72})\)
Newform subspaces: \( 0 \)
Sturm bound: \(608\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2368, [\chi])\).

Total New Old
Modular forms 7392 0 7392
Cusp forms 7200 0 7200
Eisenstein series 192 0 192

Decomposition of \(S_{2}^{\mathrm{old}}(2368, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2368, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1184, [\chi])\)\(^{\oplus 2}\)