Defining parameters
Level: | \( N \) | \(=\) | \( 2368 = 2^{6} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2368.o (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(608\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2368, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 624 | 144 | 480 |
Cusp forms | 592 | 144 | 448 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2368, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2368, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2368, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(592, [\chi])\)\(^{\oplus 3}\)