Properties

Label 2368.2.w
Level $2368$
Weight $2$
Character orbit 2368.w
Rep. character $\chi_{2368}(1729,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $148$
Sturm bound $608$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2368 = 2^{6} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2368.w (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(608\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2368, [\chi])\).

Total New Old
Modular forms 632 156 476
Cusp forms 584 148 436
Eisenstein series 48 8 40

Trace form

\( 148 q + 6 q^{5} - 72 q^{9} + 30 q^{13} - 18 q^{17} - 2 q^{21} + 68 q^{25} - 8 q^{33} - 28 q^{37} - 6 q^{41} - 64 q^{49} + 18 q^{53} - 6 q^{57} + 6 q^{61} - 30 q^{65} - 12 q^{69} + 8 q^{73} + 24 q^{77} - 66 q^{81}+ \cdots - 60 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2368, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2368, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2368, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(148, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(296, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(592, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1184, [\chi])\)\(^{\oplus 2}\)