Properties

Label 2394.2.a
Level $2394$
Weight $2$
Character orbit 2394.a
Rep. character $\chi_{2394}(1,\cdot)$
Character field $\Q$
Dimension $46$
Newform subspaces $29$
Sturm bound $960$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2394.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 29 \)
Sturm bound: \(960\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(11\), \(13\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2394))\).

Total New Old
Modular forms 496 46 450
Cusp forms 465 46 419
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(19\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(+\)\(3\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(2\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(3\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(4\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(2\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(2\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(5\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(5\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(18\)
Minus space\(-\)\(28\)

Trace form

\( 46 q + 2 q^{2} + 46 q^{4} - 4 q^{5} + 2 q^{8} + 4 q^{10} - 4 q^{11} + 12 q^{13} + 46 q^{16} + 12 q^{17} - 4 q^{20} + 78 q^{25} + 12 q^{26} + 4 q^{29} + 2 q^{32} - 4 q^{34} - 4 q^{35} + 12 q^{37} + 4 q^{40}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2394))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7 19
2394.2.a.a 2394.a 1.a $1$ $19.116$ \(\Q\) None 2394.2.a.a \(-1\) \(0\) \(-4\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-4q^{5}+q^{7}-q^{8}+4q^{10}+\cdots\)
2394.2.a.b 2394.a 1.a $1$ $19.116$ \(\Q\) None 798.2.a.i \(-1\) \(0\) \(-2\) \(-1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{5}-q^{7}-q^{8}+2q^{10}+\cdots\)
2394.2.a.c 2394.a 1.a $1$ $19.116$ \(\Q\) None 2394.2.a.c \(-1\) \(0\) \(0\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}-6q^{11}+2q^{13}+\cdots\)
2394.2.a.d 2394.a 1.a $1$ $19.116$ \(\Q\) None 2394.2.a.d \(-1\) \(0\) \(0\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}+2q^{13}-q^{14}+\cdots\)
2394.2.a.e 2394.a 1.a $1$ $19.116$ \(\Q\) None 798.2.a.g \(-1\) \(0\) \(2\) \(-1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}-q^{7}-q^{8}-2q^{10}+\cdots\)
2394.2.a.f 2394.a 1.a $1$ $19.116$ \(\Q\) None 798.2.a.h \(-1\) \(0\) \(4\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+4q^{5}-q^{7}-q^{8}-4q^{10}+\cdots\)
2394.2.a.g 2394.a 1.a $1$ $19.116$ \(\Q\) None 798.2.a.f \(1\) \(0\) \(-4\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-4q^{5}+q^{7}+q^{8}-4q^{10}+\cdots\)
2394.2.a.h 2394.a 1.a $1$ $19.116$ \(\Q\) None 798.2.a.e \(1\) \(0\) \(-2\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}-q^{7}+q^{8}-2q^{10}+\cdots\)
2394.2.a.i 2394.a 1.a $1$ $19.116$ \(\Q\) None 798.2.a.a \(1\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}-2q^{11}-4q^{13}+\cdots\)
2394.2.a.j 2394.a 1.a $1$ $19.116$ \(\Q\) None 798.2.a.d \(1\) \(0\) \(0\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}-6q^{11}-4q^{13}+\cdots\)
2394.2.a.k 2394.a 1.a $1$ $19.116$ \(\Q\) None 2394.2.a.d \(1\) \(0\) \(0\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}+2q^{13}+q^{14}+\cdots\)
2394.2.a.l 2394.a 1.a $1$ $19.116$ \(\Q\) None 2394.2.a.c \(1\) \(0\) \(0\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}+6q^{11}+2q^{13}+\cdots\)
2394.2.a.m 2394.a 1.a $1$ $19.116$ \(\Q\) None 798.2.a.b \(1\) \(0\) \(2\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{5}-q^{7}+q^{8}+2q^{10}+\cdots\)
2394.2.a.n 2394.a 1.a $1$ $19.116$ \(\Q\) None 798.2.a.c \(1\) \(0\) \(2\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{5}+q^{7}+q^{8}+2q^{10}+\cdots\)
2394.2.a.o 2394.a 1.a $1$ $19.116$ \(\Q\) None 2394.2.a.a \(1\) \(0\) \(4\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+4q^{5}+q^{7}+q^{8}+4q^{10}+\cdots\)
2394.2.a.p 2394.a 1.a $2$ $19.116$ \(\Q(\sqrt{5}) \) None 798.2.a.m \(-2\) \(0\) \(-2\) \(2\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-1-\beta )q^{5}+q^{7}-q^{8}+\cdots\)
2394.2.a.q 2394.a 1.a $2$ $19.116$ \(\Q(\sqrt{13}) \) None 266.2.a.c \(-2\) \(0\) \(-1\) \(2\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-\beta q^{5}+q^{7}-q^{8}+\beta q^{10}+\cdots\)
2394.2.a.r 2394.a 1.a $2$ $19.116$ \(\Q(\sqrt{2}) \) None 798.2.a.l \(-2\) \(0\) \(0\) \(2\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+\beta q^{5}+q^{7}-q^{8}-\beta q^{10}+\cdots\)
2394.2.a.s 2394.a 1.a $2$ $19.116$ \(\Q(\sqrt{5}) \) None 2394.2.a.s \(-2\) \(0\) \(2\) \(-2\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(1+\beta )q^{5}-q^{7}-q^{8}+\cdots\)
2394.2.a.t 2394.a 1.a $2$ $19.116$ \(\Q(\sqrt{2}) \) None 2394.2.a.t \(-2\) \(0\) \(4\) \(2\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}+q^{7}-q^{8}-2q^{10}+\cdots\)
2394.2.a.u 2394.a 1.a $2$ $19.116$ \(\Q(\sqrt{2}) \) None 2394.2.a.t \(2\) \(0\) \(-4\) \(2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}+q^{7}+q^{8}-2q^{10}+\cdots\)
2394.2.a.v 2394.a 1.a $2$ $19.116$ \(\Q(\sqrt{5}) \) None 2394.2.a.s \(2\) \(0\) \(-2\) \(-2\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(-1-\beta )q^{5}-q^{7}+q^{8}+\cdots\)
2394.2.a.w 2394.a 1.a $2$ $19.116$ \(\Q(\sqrt{5}) \) None 266.2.a.b \(2\) \(0\) \(-1\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(1-3\beta )q^{5}+q^{7}+q^{8}+\cdots\)
2394.2.a.x 2394.a 1.a $2$ $19.116$ \(\Q(\sqrt{3}) \) None 798.2.a.k \(2\) \(0\) \(0\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+\beta q^{5}-q^{7}+q^{8}+\beta q^{10}+\cdots\)
2394.2.a.y 2394.a 1.a $2$ $19.116$ \(\Q(\sqrt{29}) \) None 266.2.a.a \(2\) \(0\) \(1\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+\beta q^{5}-q^{7}+q^{8}+\beta q^{10}+\cdots\)
2394.2.a.z 2394.a 1.a $2$ $19.116$ \(\Q(\sqrt{5}) \) None 798.2.a.j \(2\) \(0\) \(2\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(1+\beta )q^{5}+q^{7}+q^{8}+\cdots\)
2394.2.a.ba 2394.a 1.a $3$ $19.116$ 3.3.469.1 None 266.2.a.d \(-3\) \(0\) \(-5\) \(-3\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-2+\beta _{1})q^{5}-q^{7}-q^{8}+\cdots\)
2394.2.a.bb 2394.a 1.a $3$ $19.116$ 3.3.148.1 None 2394.2.a.bb \(-3\) \(0\) \(-2\) \(-3\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-1-\beta _{1})q^{5}-q^{7}-q^{8}+\cdots\)
2394.2.a.bc 2394.a 1.a $3$ $19.116$ 3.3.148.1 None 2394.2.a.bb \(3\) \(0\) \(2\) \(-3\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(1+\beta _{1})q^{5}-q^{7}+q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2394))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(2394)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(266))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(342))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(399))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(798))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1197))\)\(^{\oplus 2}\)