Defining parameters
Level: | \( N \) | \(=\) | \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2394.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 29 \) | ||
Sturm bound: | \(960\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2394))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 496 | 46 | 450 |
Cusp forms | 465 | 46 | 419 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | \(19\) | Fricke | Dim |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(3\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(2\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(2\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(3\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(4\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(5\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(5\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(18\) | |||
Minus space | \(-\) | \(28\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2394))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2394))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2394)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(266))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(342))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(399))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(798))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1197))\)\(^{\oplus 2}\)