Properties

Label 2394.2.bo
Level 23942394
Weight 22
Character orbit 2394.bo
Rep. character χ2394(125,)\chi_{2394}(125,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 9696
Newform subspaces 11
Sturm bound 960960
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2394=232719 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2394.bo (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 399 399
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 1 1
Sturm bound: 960960
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(2394,[χ])M_{2}(2394, [\chi]).

Total New Old
Modular forms 992 96 896
Cusp forms 928 96 832
Eisenstein series 64 0 64

Trace form

96q+48q48q748q168q228q254q2896q37+40q4332q46+56q4932q5896q6424q6716q7040q798q8516q88++44q91+O(q100) 96 q + 48 q^{4} - 8 q^{7} - 48 q^{16} - 8 q^{22} - 8 q^{25} - 4 q^{28} - 96 q^{37} + 40 q^{43} - 32 q^{46} + 56 q^{49} - 32 q^{58} - 96 q^{64} - 24 q^{67} - 16 q^{70} - 40 q^{79} - 8 q^{85} - 16 q^{88}+ \cdots + 44 q^{91}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(2394,[χ])S_{2}^{\mathrm{new}}(2394, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
2394.2.bo.a 2394.bo 399.z 9696 19.11619.116 None 2394.2.bo.a 00 00 00 8-8 SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Decomposition of S2old(2394,[χ])S_{2}^{\mathrm{old}}(2394, [\chi]) into lower level spaces

S2old(2394,[χ]) S_{2}^{\mathrm{old}}(2394, [\chi]) \simeq S2new(399,[χ])S_{2}^{\mathrm{new}}(399, [\chi])4^{\oplus 4}\oplusS2new(798,[χ])S_{2}^{\mathrm{new}}(798, [\chi])2^{\oplus 2}\oplusS2new(1197,[χ])S_{2}^{\mathrm{new}}(1197, [\chi])2^{\oplus 2}