Properties

Label 2394.2.bo
Level $2394$
Weight $2$
Character orbit 2394.bo
Rep. character $\chi_{2394}(125,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $1$
Sturm bound $960$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2394.bo (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 399 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(960\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2394, [\chi])\).

Total New Old
Modular forms 992 96 896
Cusp forms 928 96 832
Eisenstein series 64 0 64

Trace form

\( 96 q + 48 q^{4} - 8 q^{7} - 48 q^{16} - 8 q^{22} - 8 q^{25} - 4 q^{28} - 96 q^{37} + 40 q^{43} - 32 q^{46} + 56 q^{49} - 32 q^{58} - 96 q^{64} - 24 q^{67} - 16 q^{70} - 40 q^{79} - 8 q^{85} - 16 q^{88}+ \cdots + 44 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2394, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2394.2.bo.a 2394.bo 399.z $96$ $19.116$ None 2394.2.bo.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(2394, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2394, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(399, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(798, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1197, [\chi])\)\(^{\oplus 2}\)