Defining parameters
Level: | \( N \) | \(=\) | \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2394.bo (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 399 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(960\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2394, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 992 | 96 | 896 |
Cusp forms | 928 | 96 | 832 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2394, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
2394.2.bo.a | $96$ | $19.116$ | None | \(0\) | \(0\) | \(0\) | \(-8\) |
Decomposition of \(S_{2}^{\mathrm{old}}(2394, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2394, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(399, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(798, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1197, [\chi])\)\(^{\oplus 2}\)