Properties

Label 2394.2.cq
Level $2394$
Weight $2$
Character orbit 2394.cq
Rep. character $\chi_{2394}(449,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $80$
Newform subspaces $6$
Sturm bound $960$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2394.cq (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 57 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 6 \)
Sturm bound: \(960\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2394, [\chi])\).

Total New Old
Modular forms 992 80 912
Cusp forms 928 80 848
Eisenstein series 64 0 64

Trace form

\( 80 q - 40 q^{4} - 40 q^{16} - 16 q^{19} + 24 q^{22} + 32 q^{25} - 16 q^{43} + 80 q^{49} + 48 q^{55} + 32 q^{58} + 16 q^{61} + 80 q^{64} - 48 q^{67} + 24 q^{70} - 16 q^{73} - 16 q^{76} + 48 q^{79} + 32 q^{82}+ \cdots + 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2394, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2394.2.cq.a 2394.cq 57.f $4$ $19.116$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 2394.2.cq.a \(-2\) \(0\) \(6\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{2}q^{2}+(-1+\beta _{2})q^{4}+(2+\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
2394.2.cq.b 2394.cq 57.f $4$ $19.116$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 2394.2.cq.a \(2\) \(0\) \(-6\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{2}q^{2}+(-1+\beta _{2})q^{4}+(-2+\beta _{1}+\cdots)q^{5}+\cdots\)
2394.2.cq.c 2394.cq 57.f $16$ $19.116$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 2394.2.cq.c \(-8\) \(0\) \(-12\) \(16\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1+\beta _{11})q^{2}-\beta _{11}q^{4}+(-1-\beta _{10}+\cdots)q^{5}+\cdots\)
2394.2.cq.d 2394.cq 57.f $16$ $19.116$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 2394.2.cq.c \(8\) \(0\) \(12\) \(16\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-\beta _{11})q^{2}-\beta _{11}q^{4}+(1+\beta _{10}+\cdots)q^{5}+\cdots\)
2394.2.cq.e 2394.cq 57.f $20$ $19.116$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 2394.2.cq.e \(-10\) \(0\) \(6\) \(-20\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1-\beta _{7})q^{2}+\beta _{7}q^{4}-\beta _{2}q^{5}-q^{7}+\cdots\)
2394.2.cq.f 2394.cq 57.f $20$ $19.116$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 2394.2.cq.e \(10\) \(0\) \(-6\) \(-20\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\beta _{7})q^{2}+\beta _{7}q^{4}+\beta _{2}q^{5}-q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2394, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2394, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(399, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(798, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1197, [\chi])\)\(^{\oplus 2}\)