Defining parameters
Level: | \( N \) | \(=\) | \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2394.cq (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 57 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(960\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2394, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 992 | 80 | 912 |
Cusp forms | 928 | 80 | 848 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2394, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(2394, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2394, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(399, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(798, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1197, [\chi])\)\(^{\oplus 2}\)