Properties

Label 240.12.a
Level $240$
Weight $12$
Character orbit 240.a
Rep. character $\chi_{240}(1,\cdot)$
Character field $\Q$
Dimension $44$
Newform subspaces $22$
Sturm bound $576$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 240.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 22 \)
Sturm bound: \(576\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(240))\).

Total New Old
Modular forms 540 44 496
Cusp forms 516 44 472
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(5\)
\(+\)\(+\)\(-\)\(-\)\(5\)
\(+\)\(-\)\(+\)\(-\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(6\)
\(-\)\(+\)\(+\)\(-\)\(5\)
\(-\)\(+\)\(-\)\(+\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(6\)
\(-\)\(-\)\(-\)\(-\)\(5\)
Plus space\(+\)\(23\)
Minus space\(-\)\(21\)

Trace form

\( 44 q + 486 q^{3} - 169920 q^{7} + 2598156 q^{9} - 1081688 q^{11} - 1518750 q^{15} + 18693312 q^{19} + 13479496 q^{23} + 429687500 q^{25} + 28697814 q^{27} - 155346416 q^{29} + 58859328 q^{31} + 1045524112 q^{37}+ \cdots - 63872594712 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(240))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5
240.12.a.a 240.a 1.a $1$ $184.402$ \(\Q\) None 30.12.a.f \(0\) \(-243\) \(-3125\) \(-10556\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{5}q^{3}-5^{5}q^{5}-10556q^{7}+3^{10}q^{9}+\cdots\)
240.12.a.b 240.a 1.a $1$ $184.402$ \(\Q\) None 30.12.a.c \(0\) \(-243\) \(3125\) \(-56672\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3^{5}q^{3}+5^{5}q^{5}-56672q^{7}+3^{10}q^{9}+\cdots\)
240.12.a.c 240.a 1.a $1$ $184.402$ \(\Q\) None 30.12.a.d \(0\) \(243\) \(-3125\) \(-29348\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3^{5}q^{3}-5^{5}q^{5}-29348q^{7}+3^{10}q^{9}+\cdots\)
240.12.a.d 240.a 1.a $1$ $184.402$ \(\Q\) None 30.12.a.a \(0\) \(243\) \(-3125\) \(22876\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3^{5}q^{3}-5^{5}q^{5}+22876q^{7}+3^{10}q^{9}+\cdots\)
240.12.a.e 240.a 1.a $1$ $184.402$ \(\Q\) None 15.12.a.a \(0\) \(243\) \(3125\) \(-27984\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{5}q^{3}+5^{5}q^{5}-27984q^{7}+3^{10}q^{9}+\cdots\)
240.12.a.f 240.a 1.a $1$ $184.402$ \(\Q\) None 30.12.a.e \(0\) \(243\) \(3125\) \(5152\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{5}q^{3}+5^{5}q^{5}+5152q^{7}+3^{10}q^{9}+\cdots\)
240.12.a.g 240.a 1.a $1$ $184.402$ \(\Q\) None 30.12.a.b \(0\) \(243\) \(3125\) \(57376\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{5}q^{3}+5^{5}q^{5}+57376q^{7}+3^{10}q^{9}+\cdots\)
240.12.a.h 240.a 1.a $2$ $184.402$ \(\Q(\sqrt{1119913}) \) None 60.12.a.c \(0\) \(-486\) \(-6250\) \(-36496\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{5}q^{3}-5^{5}q^{5}+(-18248-\beta )q^{7}+\cdots\)
240.12.a.i 240.a 1.a $2$ $184.402$ \(\Q(\sqrt{534073}) \) None 120.12.a.a \(0\) \(-486\) \(-6250\) \(-11440\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{5}q^{3}-5^{5}q^{5}+(-5720-\beta )q^{7}+\cdots\)
240.12.a.j 240.a 1.a $2$ $184.402$ \(\Q(\sqrt{1609}) \) None 15.12.a.b \(0\) \(-486\) \(-6250\) \(10864\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{5}q^{3}-5^{5}q^{5}+(5432-319\beta )q^{7}+\cdots\)
240.12.a.k 240.a 1.a $2$ $184.402$ \(\Q(\sqrt{1009}) \) None 120.12.a.b \(0\) \(-486\) \(6250\) \(19448\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3^{5}q^{3}+5^{5}q^{5}+(9724-83\beta )q^{7}+\cdots\)
240.12.a.l 240.a 1.a $2$ $184.402$ \(\Q(\sqrt{193}) \) None 60.12.a.d \(0\) \(-486\) \(6250\) \(44504\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3^{5}q^{3}+5^{5}q^{5}+(22252-29\beta )q^{7}+\cdots\)
240.12.a.m 240.a 1.a $2$ $184.402$ \(\Q(\sqrt{1801}) \) None 15.12.a.c \(0\) \(486\) \(-6250\) \(-7784\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3^{5}q^{3}-5^{5}q^{5}+(-3892-14\beta )q^{7}+\cdots\)
240.12.a.n 240.a 1.a $2$ $184.402$ \(\Q(\sqrt{26929}) \) None 60.12.a.a \(0\) \(486\) \(-6250\) \(11816\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3^{5}q^{3}-5^{5}q^{5}+(5908-\beta )q^{7}+3^{10}q^{9}+\cdots\)
240.12.a.o 240.a 1.a $2$ $184.402$ \(\Q(\sqrt{25489}) \) None 60.12.a.b \(0\) \(486\) \(6250\) \(-65584\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{5}q^{3}+5^{5}q^{5}+(-32792-\beta )q^{7}+\cdots\)
240.12.a.p 240.a 1.a $3$ $184.402$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 120.12.a.g \(0\) \(-729\) \(-9375\) \(5148\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{5}q^{3}-5^{5}q^{5}+(1716+\beta _{1}+3\beta _{2})q^{7}+\cdots\)
240.12.a.q 240.a 1.a $3$ $184.402$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 120.12.a.h \(0\) \(-729\) \(9375\) \(-64368\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3^{5}q^{3}+5^{5}q^{5}+(-21456-\beta _{1}+\cdots)q^{7}+\cdots\)
240.12.a.r 240.a 1.a $3$ $184.402$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 15.12.a.d \(0\) \(-729\) \(9375\) \(14608\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3^{5}q^{3}+5^{5}q^{5}+(4868+\beta _{1}+4\beta _{2})q^{7}+\cdots\)
240.12.a.s 240.a 1.a $3$ $184.402$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 120.12.a.d \(0\) \(729\) \(-9375\) \(-49148\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3^{5}q^{3}-5^{5}q^{5}+(-16383-\beta _{1}+\cdots)q^{7}+\cdots\)
240.12.a.t 240.a 1.a $3$ $184.402$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 120.12.a.c \(0\) \(729\) \(-9375\) \(9108\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3^{5}q^{3}-5^{5}q^{5}+(3036-3\beta _{1}+\beta _{2})q^{7}+\cdots\)
240.12.a.u 240.a 1.a $3$ $184.402$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 120.12.a.f \(0\) \(729\) \(9375\) \(-34848\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{5}q^{3}+5^{5}q^{5}+(-11616-\beta _{1}+\cdots)q^{7}+\cdots\)
240.12.a.v 240.a 1.a $3$ $184.402$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 120.12.a.e \(0\) \(729\) \(9375\) \(23408\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{5}q^{3}+5^{5}q^{5}+(7803-\beta _{1})q^{7}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(240))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_0(240)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 5}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 2}\)