Defining parameters
Level: | \( N \) | \(=\) | \( 240 = 2^{4} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 240.bk (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 48 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(240, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 104 | 64 | 40 |
Cusp forms | 88 | 64 | 24 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(240, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
240.2.bk.a | $4$ | $1.916$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(-4\) | \(0\) | \(-16\) | \(q+(\zeta_{8}+\zeta_{8}^{3})q^{2}+(-1-\zeta_{8}^{2}-\zeta_{8}^{3})q^{3}+\cdots\) |
240.2.bk.b | $60$ | $1.916$ | None | \(0\) | \(4\) | \(0\) | \(16\) |
Decomposition of \(S_{2}^{\mathrm{old}}(240, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(240, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)