Defining parameters
Level: | \( N \) | \(=\) | \( 240 = 2^{4} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 240.o (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 60 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(240, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 60 | 12 | 48 |
Cusp forms | 36 | 12 | 24 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(240, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
240.2.o.a | $4$ | $1.916$ | \(\Q(\sqrt{2}, \sqrt{-5})\) | \(\Q(\sqrt{-5}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}-\beta _{2}q^{5}+(\beta _{1}-\beta _{3})q^{7}+(-2+\cdots)q^{9}+\cdots\) |
240.2.o.b | $8$ | $1.916$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta_{2} q^{3}-\beta_1 q^{5}+(\beta_{4}-\beta_1+1)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(240, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(240, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 3}\)