Properties

Label 240.2.o
Level $240$
Weight $2$
Character orbit 240.o
Rep. character $\chi_{240}(239,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $2$
Sturm bound $96$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 240.o (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 60 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(240, [\chi])\).

Total New Old
Modular forms 60 12 48
Cusp forms 36 12 24
Eisenstein series 24 0 24

Trace form

\( 12 q + 12 q^{21} - 12 q^{25} - 12 q^{45} - 12 q^{49} - 48 q^{61} - 12 q^{69} - 60 q^{81} + 48 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(240, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
240.2.o.a 240.o 60.h $4$ $1.916$ \(\Q(\sqrt{2}, \sqrt{-5})\) \(\Q(\sqrt{-5}) \) 240.2.o.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{1}q^{3}-\beta _{2}q^{5}+(\beta _{1}-\beta _{3})q^{7}+(-2+\cdots)q^{9}+\cdots\)
240.2.o.b 240.o 60.h $8$ $1.916$ \(\Q(\zeta_{24})\) None 240.2.o.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{2} q^{3}-\beta_1 q^{5}+(\beta_{4}-\beta_1+1)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(240, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 3}\)