Properties

Label 240.6.a
Level $240$
Weight $6$
Character orbit 240.a
Rep. character $\chi_{240}(1,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $17$
Sturm bound $288$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 240.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 17 \)
Sturm bound: \(288\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(240))\).

Total New Old
Modular forms 252 20 232
Cusp forms 228 20 208
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(3\)
Plus space\(+\)\(9\)
Minus space\(-\)\(11\)

Trace form

\( 20 q - 18 q^{3} + 320 q^{7} + 1620 q^{9} - 1208 q^{11} + 450 q^{15} - 4416 q^{19} + 1672 q^{23} + 12500 q^{25} - 1458 q^{27} - 8144 q^{29} - 2496 q^{31} + 21296 q^{37} - 21636 q^{39} + 9640 q^{41} + 19128 q^{43}+ \cdots - 97848 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(240))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5
240.6.a.a 240.a 1.a $1$ $38.492$ \(\Q\) None 30.6.a.a \(0\) \(-9\) \(-25\) \(-164\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}-5^{2}q^{5}-164q^{7}+3^{4}q^{9}+\cdots\)
240.6.a.b 240.a 1.a $1$ $38.492$ \(\Q\) None 15.6.a.b \(0\) \(-9\) \(-25\) \(-12\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}-5^{2}q^{5}-12q^{7}+3^{4}q^{9}-112q^{11}+\cdots\)
240.6.a.c 240.a 1.a $1$ $38.492$ \(\Q\) None 120.6.a.e \(0\) \(-9\) \(-25\) \(28\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}-5^{2}q^{5}+28q^{7}+3^{4}q^{9}+208q^{11}+\cdots\)
240.6.a.d 240.a 1.a $1$ $38.492$ \(\Q\) None 60.6.a.c \(0\) \(-9\) \(-25\) \(244\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}-5^{2}q^{5}+244q^{7}+3^{4}q^{9}+\cdots\)
240.6.a.e 240.a 1.a $1$ $38.492$ \(\Q\) None 60.6.a.d \(0\) \(-9\) \(25\) \(-56\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-9q^{3}+5^{2}q^{5}-56q^{7}+3^{4}q^{9}-156q^{11}+\cdots\)
240.6.a.f 240.a 1.a $1$ $38.492$ \(\Q\) None 30.6.a.b \(0\) \(-9\) \(25\) \(-32\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-9q^{3}+5^{2}q^{5}-2^{5}q^{7}+3^{4}q^{9}-12q^{11}+\cdots\)
240.6.a.g 240.a 1.a $1$ $38.492$ \(\Q\) None 120.6.a.f \(0\) \(-9\) \(25\) \(160\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-9q^{3}+5^{2}q^{5}+160q^{7}+3^{4}q^{9}+\cdots\)
240.6.a.h 240.a 1.a $1$ $38.492$ \(\Q\) None 120.6.a.b \(0\) \(9\) \(-25\) \(-108\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}-5^{2}q^{5}-108q^{7}+3^{4}q^{9}+\cdots\)
240.6.a.i 240.a 1.a $1$ $38.492$ \(\Q\) None 60.6.a.a \(0\) \(9\) \(-25\) \(-44\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}-5^{2}q^{5}-44q^{7}+3^{4}q^{9}-6^{3}q^{11}+\cdots\)
240.6.a.j 240.a 1.a $1$ $38.492$ \(\Q\) None 120.6.a.a \(0\) \(9\) \(-25\) \(100\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}-5^{2}q^{5}+10^{2}q^{7}+3^{4}q^{9}+\cdots\)
240.6.a.k 240.a 1.a $1$ $38.492$ \(\Q\) None 15.6.a.a \(0\) \(9\) \(-25\) \(132\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}-5^{2}q^{5}+132q^{7}+3^{4}q^{9}+\cdots\)
240.6.a.l 240.a 1.a $1$ $38.492$ \(\Q\) None 120.6.a.d \(0\) \(9\) \(25\) \(-128\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+9q^{3}+5^{2}q^{5}-2^{7}q^{7}+3^{4}q^{9}+308q^{11}+\cdots\)
240.6.a.m 240.a 1.a $1$ $38.492$ \(\Q\) None 60.6.a.b \(0\) \(9\) \(25\) \(16\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+9q^{3}+5^{2}q^{5}+2^{4}q^{7}+3^{4}q^{9}+564q^{11}+\cdots\)
240.6.a.n 240.a 1.a $1$ $38.492$ \(\Q\) None 120.6.a.c \(0\) \(9\) \(25\) \(80\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+9q^{3}+5^{2}q^{5}+80q^{7}+3^{4}q^{9}-684q^{11}+\cdots\)
240.6.a.o 240.a 1.a $2$ $38.492$ \(\Q(\sqrt{1489}) \) None 120.6.a.g \(0\) \(-18\) \(-50\) \(-16\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}-5^{2}q^{5}+(-8-\beta )q^{7}+3^{4}q^{9}+\cdots\)
240.6.a.p 240.a 1.a $2$ $38.492$ \(\Q(\sqrt{2161}) \) None 120.6.a.h \(0\) \(-18\) \(50\) \(8\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-9q^{3}+5^{2}q^{5}+(4+\beta )q^{7}+3^{4}q^{9}+\cdots\)
240.6.a.q 240.a 1.a $2$ $38.492$ \(\Q(\sqrt{409}) \) None 15.6.a.c \(0\) \(18\) \(50\) \(112\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+9q^{3}+5^{2}q^{5}+(56-\beta )q^{7}+3^{4}q^{9}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(240))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(240)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 2}\)