Properties

Label 240.6.a
Level 240240
Weight 66
Character orbit 240.a
Rep. character χ240(1,)\chi_{240}(1,\cdot)
Character field Q\Q
Dimension 2020
Newform subspaces 1717
Sturm bound 288288
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 240=2435 240 = 2^{4} \cdot 3 \cdot 5
Weight: k k == 6 6
Character orbit: [χ][\chi] == 240.a (trivial)
Character field: Q\Q
Newform subspaces: 17 17
Sturm bound: 288288
Trace bound: 77
Distinguishing TpT_p: 77

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ0(240))M_{6}(\Gamma_0(240)).

Total New Old
Modular forms 252 20 232
Cusp forms 228 20 208
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

223355FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++++29293326262626332323330033
++++--34343331313131332828330033
++-++-32322230302929222727330033
++--++31312229292828222626330033
-++++-32323329292929332626330033
-++-++31312229292828222626330033
--++++33332231313030222828330033
----30303327272727332424330033
Plus space++12412499115115112112991031031212001212
Minus space-128128111111711711611611111051051212001212

Trace form

20q18q3+320q7+1620q91208q11+450q154416q19+1672q23+12500q251458q278144q292496q31+21296q3721636q39+9640q41+19128q43+97848q99+O(q100) 20 q - 18 q^{3} + 320 q^{7} + 1620 q^{9} - 1208 q^{11} + 450 q^{15} - 4416 q^{19} + 1672 q^{23} + 12500 q^{25} - 1458 q^{27} - 8144 q^{29} - 2496 q^{31} + 21296 q^{37} - 21636 q^{39} + 9640 q^{41} + 19128 q^{43}+ \cdots - 97848 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ0(240))S_{6}^{\mathrm{new}}(\Gamma_0(240)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 5
240.6.a.a 240.a 1.a 11 38.49238.492 Q\Q None 30.6.a.a 00 9-9 25-25 164-164 - ++ ++ SU(2)\mathrm{SU}(2) q9q352q5164q7+34q9+q-9q^{3}-5^{2}q^{5}-164q^{7}+3^{4}q^{9}+\cdots
240.6.a.b 240.a 1.a 11 38.49238.492 Q\Q None 15.6.a.b 00 9-9 25-25 12-12 - ++ ++ SU(2)\mathrm{SU}(2) q9q352q512q7+34q9112q11+q-9q^{3}-5^{2}q^{5}-12q^{7}+3^{4}q^{9}-112q^{11}+\cdots
240.6.a.c 240.a 1.a 11 38.49238.492 Q\Q None 120.6.a.e 00 9-9 25-25 2828 ++ ++ ++ SU(2)\mathrm{SU}(2) q9q352q5+28q7+34q9+208q11+q-9q^{3}-5^{2}q^{5}+28q^{7}+3^{4}q^{9}+208q^{11}+\cdots
240.6.a.d 240.a 1.a 11 38.49238.492 Q\Q None 60.6.a.c 00 9-9 25-25 244244 - ++ ++ SU(2)\mathrm{SU}(2) q9q352q5+244q7+34q9+q-9q^{3}-5^{2}q^{5}+244q^{7}+3^{4}q^{9}+\cdots
240.6.a.e 240.a 1.a 11 38.49238.492 Q\Q None 60.6.a.d 00 9-9 2525 56-56 - ++ - SU(2)\mathrm{SU}(2) q9q3+52q556q7+34q9156q11+q-9q^{3}+5^{2}q^{5}-56q^{7}+3^{4}q^{9}-156q^{11}+\cdots
240.6.a.f 240.a 1.a 11 38.49238.492 Q\Q None 30.6.a.b 00 9-9 2525 32-32 - ++ - SU(2)\mathrm{SU}(2) q9q3+52q525q7+34q912q11+q-9q^{3}+5^{2}q^{5}-2^{5}q^{7}+3^{4}q^{9}-12q^{11}+\cdots
240.6.a.g 240.a 1.a 11 38.49238.492 Q\Q None 120.6.a.f 00 9-9 2525 160160 ++ ++ - SU(2)\mathrm{SU}(2) q9q3+52q5+160q7+34q9+q-9q^{3}+5^{2}q^{5}+160q^{7}+3^{4}q^{9}+\cdots
240.6.a.h 240.a 1.a 11 38.49238.492 Q\Q None 120.6.a.b 00 99 25-25 108-108 ++ - ++ SU(2)\mathrm{SU}(2) q+9q352q5108q7+34q9+q+9q^{3}-5^{2}q^{5}-108q^{7}+3^{4}q^{9}+\cdots
240.6.a.i 240.a 1.a 11 38.49238.492 Q\Q None 60.6.a.a 00 99 25-25 44-44 - - ++ SU(2)\mathrm{SU}(2) q+9q352q544q7+34q963q11+q+9q^{3}-5^{2}q^{5}-44q^{7}+3^{4}q^{9}-6^{3}q^{11}+\cdots
240.6.a.j 240.a 1.a 11 38.49238.492 Q\Q None 120.6.a.a 00 99 25-25 100100 ++ - ++ SU(2)\mathrm{SU}(2) q+9q352q5+102q7+34q9+q+9q^{3}-5^{2}q^{5}+10^{2}q^{7}+3^{4}q^{9}+\cdots
240.6.a.k 240.a 1.a 11 38.49238.492 Q\Q None 15.6.a.a 00 99 25-25 132132 - - ++ SU(2)\mathrm{SU}(2) q+9q352q5+132q7+34q9+q+9q^{3}-5^{2}q^{5}+132q^{7}+3^{4}q^{9}+\cdots
240.6.a.l 240.a 1.a 11 38.49238.492 Q\Q None 120.6.a.d 00 99 2525 128-128 ++ - - SU(2)\mathrm{SU}(2) q+9q3+52q527q7+34q9+308q11+q+9q^{3}+5^{2}q^{5}-2^{7}q^{7}+3^{4}q^{9}+308q^{11}+\cdots
240.6.a.m 240.a 1.a 11 38.49238.492 Q\Q None 60.6.a.b 00 99 2525 1616 - - - SU(2)\mathrm{SU}(2) q+9q3+52q5+24q7+34q9+564q11+q+9q^{3}+5^{2}q^{5}+2^{4}q^{7}+3^{4}q^{9}+564q^{11}+\cdots
240.6.a.n 240.a 1.a 11 38.49238.492 Q\Q None 120.6.a.c 00 99 2525 8080 ++ - - SU(2)\mathrm{SU}(2) q+9q3+52q5+80q7+34q9684q11+q+9q^{3}+5^{2}q^{5}+80q^{7}+3^{4}q^{9}-684q^{11}+\cdots
240.6.a.o 240.a 1.a 22 38.49238.492 Q(1489)\Q(\sqrt{1489}) None 120.6.a.g 00 18-18 50-50 16-16 ++ ++ ++ SU(2)\mathrm{SU}(2) q9q352q5+(8β)q7+34q9+q-9q^{3}-5^{2}q^{5}+(-8-\beta )q^{7}+3^{4}q^{9}+\cdots
240.6.a.p 240.a 1.a 22 38.49238.492 Q(2161)\Q(\sqrt{2161}) None 120.6.a.h 00 18-18 5050 88 ++ ++ - SU(2)\mathrm{SU}(2) q9q3+52q5+(4+β)q7+34q9+q-9q^{3}+5^{2}q^{5}+(4+\beta )q^{7}+3^{4}q^{9}+\cdots
240.6.a.q 240.a 1.a 22 38.49238.492 Q(409)\Q(\sqrt{409}) None 15.6.a.c 00 1818 5050 112112 - - - SU(2)\mathrm{SU}(2) q+9q3+52q5+(56β)q7+34q9+q+9q^{3}+5^{2}q^{5}+(56-\beta )q^{7}+3^{4}q^{9}+\cdots

Decomposition of S6old(Γ0(240))S_{6}^{\mathrm{old}}(\Gamma_0(240)) into lower level spaces

S6old(Γ0(240)) S_{6}^{\mathrm{old}}(\Gamma_0(240)) \simeq S6new(Γ0(3))S_{6}^{\mathrm{new}}(\Gamma_0(3))10^{\oplus 10}\oplusS6new(Γ0(4))S_{6}^{\mathrm{new}}(\Gamma_0(4))12^{\oplus 12}\oplusS6new(Γ0(5))S_{6}^{\mathrm{new}}(\Gamma_0(5))10^{\oplus 10}\oplusS6new(Γ0(6))S_{6}^{\mathrm{new}}(\Gamma_0(6))8^{\oplus 8}\oplusS6new(Γ0(8))S_{6}^{\mathrm{new}}(\Gamma_0(8))8^{\oplus 8}\oplusS6new(Γ0(10))S_{6}^{\mathrm{new}}(\Gamma_0(10))8^{\oplus 8}\oplusS6new(Γ0(15))S_{6}^{\mathrm{new}}(\Gamma_0(15))5^{\oplus 5}\oplusS6new(Γ0(16))S_{6}^{\mathrm{new}}(\Gamma_0(16))4^{\oplus 4}\oplusS6new(Γ0(20))S_{6}^{\mathrm{new}}(\Gamma_0(20))6^{\oplus 6}\oplusS6new(Γ0(24))S_{6}^{\mathrm{new}}(\Gamma_0(24))4^{\oplus 4}\oplusS6new(Γ0(30))S_{6}^{\mathrm{new}}(\Gamma_0(30))4^{\oplus 4}\oplusS6new(Γ0(40))S_{6}^{\mathrm{new}}(\Gamma_0(40))4^{\oplus 4}\oplusS6new(Γ0(48))S_{6}^{\mathrm{new}}(\Gamma_0(48))2^{\oplus 2}\oplusS6new(Γ0(60))S_{6}^{\mathrm{new}}(\Gamma_0(60))3^{\oplus 3}\oplusS6new(Γ0(80))S_{6}^{\mathrm{new}}(\Gamma_0(80))2^{\oplus 2}\oplusS6new(Γ0(120))S_{6}^{\mathrm{new}}(\Gamma_0(120))2^{\oplus 2}