Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M6(Γ0(240)).
|
Total |
New |
Old |
Modular forms
| 252 |
20 |
232 |
Cusp forms
| 228 |
20 |
208 |
Eisenstein series
| 24 |
0 |
24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 3 | 5 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | + | | 29 | 3 | 26 | | 26 | 3 | 23 | | 3 | 0 | 3 |
+ | + | − | − | | 34 | 3 | 31 | | 31 | 3 | 28 | | 3 | 0 | 3 |
+ | − | + | − | | 32 | 2 | 30 | | 29 | 2 | 27 | | 3 | 0 | 3 |
+ | − | − | + | | 31 | 2 | 29 | | 28 | 2 | 26 | | 3 | 0 | 3 |
− | + | + | − | | 32 | 3 | 29 | | 29 | 3 | 26 | | 3 | 0 | 3 |
− | + | − | + | | 31 | 2 | 29 | | 28 | 2 | 26 | | 3 | 0 | 3 |
− | − | + | + | | 33 | 2 | 31 | | 30 | 2 | 28 | | 3 | 0 | 3 |
− | − | − | − | | 30 | 3 | 27 | | 27 | 3 | 24 | | 3 | 0 | 3 |
Plus space | + | | 124 | 9 | 115 | | 112 | 9 | 103 | | 12 | 0 | 12 |
Minus space | − | | 128 | 11 | 117 | | 116 | 11 | 105 | | 12 | 0 | 12 |
Decomposition of S6new(Γ0(240)) into newform subspaces
Decomposition of S6old(Γ0(240)) into lower level spaces