Properties

Label 240.8
Level 240
Weight 8
Dimension 4130
Nonzero newspaces 14
Sturm bound 24576
Trace bound 13

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 14 \)
Sturm bound: \(24576\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(240))\).

Total New Old
Modular forms 10976 4186 6790
Cusp forms 10528 4130 6398
Eisenstein series 448 56 392

Trace form

\( 4130 q + 52 q^{3} - 736 q^{4} + 278 q^{5} - 360 q^{6} + 644 q^{7} - 4008 q^{8} - 3498 q^{9} + 25936 q^{10} + 7224 q^{11} - 54712 q^{12} - 32272 q^{13} + 88056 q^{14} + 3696 q^{15} + 105536 q^{16} + 8724 q^{17}+ \cdots - 23595312 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(240))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
240.8.a \(\chi_{240}(1, \cdot)\) 240.8.a.a 1 1
240.8.a.b 1
240.8.a.c 1
240.8.a.d 1
240.8.a.e 1
240.8.a.f 1
240.8.a.g 1
240.8.a.h 1
240.8.a.i 1
240.8.a.j 1
240.8.a.k 1
240.8.a.l 1
240.8.a.m 1
240.8.a.n 1
240.8.a.o 2
240.8.a.p 2
240.8.a.q 2
240.8.a.r 2
240.8.a.s 2
240.8.a.t 2
240.8.a.u 2
240.8.b \(\chi_{240}(71, \cdot)\) None 0 1
240.8.d \(\chi_{240}(169, \cdot)\) None 0 1
240.8.f \(\chi_{240}(49, \cdot)\) 240.8.f.a 2 1
240.8.f.b 2
240.8.f.c 4
240.8.f.d 4
240.8.f.e 8
240.8.f.f 10
240.8.f.g 12
240.8.h \(\chi_{240}(191, \cdot)\) 240.8.h.a 20 1
240.8.h.b 36
240.8.k \(\chi_{240}(121, \cdot)\) None 0 1
240.8.m \(\chi_{240}(119, \cdot)\) None 0 1
240.8.o \(\chi_{240}(239, \cdot)\) 240.8.o.a 4 1
240.8.o.b 24
240.8.o.c 56
240.8.s \(\chi_{240}(61, \cdot)\) n/a 224 2
240.8.t \(\chi_{240}(59, \cdot)\) n/a 664 2
240.8.v \(\chi_{240}(17, \cdot)\) n/a 164 2
240.8.w \(\chi_{240}(127, \cdot)\) 240.8.w.a 28 2
240.8.w.b 56
240.8.y \(\chi_{240}(163, \cdot)\) n/a 336 2
240.8.bb \(\chi_{240}(173, \cdot)\) n/a 664 2
240.8.bc \(\chi_{240}(43, \cdot)\) n/a 336 2
240.8.bf \(\chi_{240}(53, \cdot)\) n/a 664 2
240.8.bh \(\chi_{240}(7, \cdot)\) None 0 2
240.8.bi \(\chi_{240}(137, \cdot)\) None 0 2
240.8.bk \(\chi_{240}(11, \cdot)\) n/a 448 2
240.8.bl \(\chi_{240}(109, \cdot)\) n/a 336 2

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(240))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(240)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(120))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(240))\)\(^{\oplus 1}\)