Properties

Label 2400.2.w
Level $2400$
Weight $2$
Character orbit 2400.w
Rep. character $\chi_{2400}(607,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $72$
Newform subspaces $12$
Sturm bound $960$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2400.w (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 12 \)
Sturm bound: \(960\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(7\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2400, [\chi])\).

Total New Old
Modular forms 1056 72 984
Cusp forms 864 72 792
Eisenstein series 192 0 192

Trace form

\( 72 q + 8 q^{13} - 24 q^{17} - 16 q^{33} - 8 q^{37} - 64 q^{41} - 8 q^{53} + 40 q^{73} + 96 q^{77} - 72 q^{81} + 32 q^{93} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2400, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2400.2.w.a 2400.w 20.e $4$ $19.164$ \(\Q(\zeta_{8})\) None 2400.2.w.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\zeta_{8}q^{3}+(-2+2\zeta_{8}^{2}-2\zeta_{8}^{3})q^{7}+\cdots\)
2400.2.w.b 2400.w 20.e $4$ $19.164$ \(\Q(\zeta_{8})\) None 2400.2.w.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\zeta_{8}q^{3}+(-2+2\zeta_{8}^{2}-2\zeta_{8}^{3})q^{7}+\cdots\)
2400.2.w.c 2400.w 20.e $4$ $19.164$ \(\Q(\zeta_{8})\) None 480.2.w.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q-\zeta_{8}q^{3}+(-1+\zeta_{8}^{2})q^{7}+\zeta_{8}^{2}q^{9}+\cdots\)
2400.2.w.d 2400.w 20.e $4$ $19.164$ \(\Q(\zeta_{8})\) None 480.2.w.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q-\zeta_{8}q^{3}+(1-\zeta_{8}^{2})q^{7}+\zeta_{8}^{2}q^{9}+(-\zeta_{8}+\cdots)q^{11}+\cdots\)
2400.2.w.e 2400.w 20.e $4$ $19.164$ \(\Q(\zeta_{8})\) None 2400.2.w.a \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\zeta_{8}q^{3}+(2-2\zeta_{8}^{2}-2\zeta_{8}^{3})q^{7}+\zeta_{8}^{2}q^{9}+\cdots\)
2400.2.w.f 2400.w 20.e $4$ $19.164$ \(\Q(\zeta_{8})\) None 2400.2.w.a \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\zeta_{8}q^{3}+(2-2\zeta_{8}^{2}-2\zeta_{8}^{3})q^{7}+\zeta_{8}^{2}q^{9}+\cdots\)
2400.2.w.g 2400.w 20.e $8$ $19.164$ \(\Q(\zeta_{24})\) None 2400.2.w.g \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_1 q^{3}+(\beta_{6}-\beta_{5}-\beta_{4}+\cdots-1)q^{7}+\cdots\)
2400.2.w.h 2400.w 20.e $8$ $19.164$ \(\Q(\zeta_{24})\) None 2400.2.w.g \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_1 q^{3}+(\beta_{6}-\beta_{5}-\beta_{4}+\cdots-1)q^{7}+\cdots\)
2400.2.w.i 2400.w 20.e $8$ $19.164$ 8.0.1698758656.6 None 480.2.w.c \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{2}q^{3}+(-1-\beta _{4}-\beta _{6})q^{7}-\beta _{4}q^{9}+\cdots\)
2400.2.w.j 2400.w 20.e $8$ $19.164$ 8.0.1698758656.6 None 480.2.w.c \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{3}q^{3}+(1+\beta _{5})q^{7}+\beta _{4}q^{9}+(\beta _{1}+\cdots)q^{11}+\cdots\)
2400.2.w.k 2400.w 20.e $8$ $19.164$ \(\Q(\zeta_{24})\) None 2400.2.w.g \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_1 q^{3}+(-\beta_{6}-\beta_{5}+\beta_{4}+\cdots+1)q^{7}+\cdots\)
2400.2.w.l 2400.w 20.e $8$ $19.164$ \(\Q(\zeta_{24})\) None 2400.2.w.g \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_1 q^{3}+(-\beta_{6}-\beta_{5}+\beta_{4}+\cdots+1)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2400, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2400, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(800, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1200, [\chi])\)\(^{\oplus 2}\)