Defining parameters
Level: | \( N \) | \(=\) | \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2400.w (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(960\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(7\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2400, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1056 | 72 | 984 |
Cusp forms | 864 | 72 | 792 |
Eisenstein series | 192 | 0 | 192 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2400, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(2400, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2400, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(800, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1200, [\chi])\)\(^{\oplus 2}\)