Defining parameters
Level: | \( N \) | \(=\) | \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2400.by (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 96 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Sturm bound: | \(1920\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(2400, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5808 | 3672 | 2136 |
Cusp forms | 5712 | 3624 | 2088 |
Eisenstein series | 96 | 48 | 48 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(2400, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(2400, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(2400, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)