Properties

Label 2400.4.by
Level $2400$
Weight $4$
Character orbit 2400.by
Rep. character $\chi_{2400}(251,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $3624$
Sturm bound $1920$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.by (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 96 \)
Character field: \(\Q(\zeta_{8})\)
Sturm bound: \(1920\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2400, [\chi])\).

Total New Old
Modular forms 5808 3672 2136
Cusp forms 5712 3624 2088
Eisenstein series 96 48 48

Trace form

\( 3624 q + 4 q^{3} + 8 q^{4} - 12 q^{6} + 8 q^{7} + 4 q^{9} + 4 q^{12} + 8 q^{13} + 456 q^{16} + 4 q^{18} + 8 q^{19} - 12 q^{21} + 440 q^{22} + 504 q^{24} + 268 q^{27} + 8 q^{28} + 8 q^{33} - 184 q^{34} + 1448 q^{36}+ \cdots + 5316 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2400, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2400, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2400, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)