Properties

Label 2400.4.ck
Level $2400$
Weight $4$
Character orbit 2400.ck
Rep. character $\chi_{2400}(529,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $720$
Sturm bound $1920$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.ck (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 200 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(1920\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2400, [\chi])\).

Total New Old
Modular forms 5824 720 5104
Cusp forms 5696 720 4976
Eisenstein series 128 0 128

Trace form

\( 720 q - 1620 q^{9} - 44 q^{25} + 744 q^{31} + 624 q^{39} + 472 q^{41} - 35280 q^{49} - 144 q^{55} + 5404 q^{65} - 3160 q^{79} - 14580 q^{81} - 660 q^{89} + 8824 q^{95} - 3720 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2400, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2400, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2400, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(800, [\chi])\)\(^{\oplus 2}\)