Properties

Label 2400.4.ea
Level $2400$
Weight $4$
Character orbit 2400.ea
Rep. character $\chi_{2400}(61,\cdot)$
Character field $\Q(\zeta_{40})$
Dimension $11520$
Sturm bound $1920$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.ea (of order \(40\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 800 \)
Character field: \(\Q(\zeta_{40})\)
Sturm bound: \(1920\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2400, [\chi])\).

Total New Old
Modular forms 23104 11520 11584
Cusp forms 22976 11520 11456
Eisenstein series 128 0 128

Trace form

\( 11520 q - 96 q^{12} + 864 q^{22} + 80 q^{26} - 2976 q^{31} - 912 q^{35} + 6848 q^{40} - 2856 q^{50} - 288 q^{55} + 4032 q^{58} + 2448 q^{60} - 11592 q^{64} + 5936 q^{68} + 1800 q^{70} - 8624 q^{74} - 2208 q^{75}+ \cdots + 12624 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2400, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2400, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2400, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(800, [\chi])\)\(^{\oplus 2}\)