Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M2(Γ0(242)).
|
Total |
New |
Old |
Modular forms
| 45 |
10 |
35 |
Cusp forms
| 22 |
10 |
12 |
Eisenstein series
| 23 |
0 |
23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 11 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 9 | 2 | 7 | | 4 | 2 | 2 | | 5 | 0 | 5 |
+ | − | − | | 13 | 3 | 10 | | 7 | 3 | 4 | | 6 | 0 | 6 |
− | + | − | | 12 | 4 | 8 | | 6 | 4 | 2 | | 6 | 0 | 6 |
− | − | + | | 11 | 1 | 10 | | 5 | 1 | 4 | | 6 | 0 | 6 |
Plus space | + | | 20 | 3 | 17 | | 9 | 3 | 6 | | 11 | 0 | 11 |
Minus space | − | | 25 | 7 | 18 | | 13 | 7 | 6 | | 12 | 0 | 12 |
Decomposition of S2new(Γ0(242)) into newform subspaces
Decomposition of S2old(Γ0(242)) into lower level spaces