Defining parameters
Level: | \( N \) | \(=\) | \( 242 = 2 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 242.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(66\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(242))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 45 | 10 | 35 |
Cusp forms | 22 | 10 | 12 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(11\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(3\) | |
Minus space | \(-\) | \(7\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(242))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 11 | |||||||
242.2.a.a | $1$ | $1.932$ | \(\Q\) | None | \(-1\) | \(-2\) | \(-3\) | \(2\) | $+$ | $-$ | \(q-q^{2}-2q^{3}+q^{4}-3q^{5}+2q^{6}+2q^{7}+\cdots\) | |
242.2.a.b | $1$ | $1.932$ | \(\Q\) | None | \(1\) | \(-2\) | \(-3\) | \(-2\) | $-$ | $-$ | \(q+q^{2}-2q^{3}+q^{4}-3q^{5}-2q^{6}-2q^{7}+\cdots\) | |
242.2.a.c | $2$ | $1.932$ | \(\Q(\sqrt{3}) \) | None | \(-2\) | \(-2\) | \(0\) | \(-6\) | $+$ | $+$ | \(q-q^{2}+(-1+\beta )q^{3}+q^{4}-\beta q^{5}+(1+\cdots)q^{6}+\cdots\) | |
242.2.a.d | $2$ | $1.932$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(3\) | \(2\) | \(4\) | $+$ | $-$ | \(q-q^{2}+(1+\beta )q^{3}+q^{4}+(2-2\beta )q^{5}+\cdots\) | |
242.2.a.e | $2$ | $1.932$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(-2\) | \(0\) | \(6\) | $-$ | $+$ | \(q+q^{2}+(-1+\beta )q^{3}+q^{4}-\beta q^{5}+(-1+\cdots)q^{6}+\cdots\) | |
242.2.a.f | $2$ | $1.932$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(3\) | \(2\) | \(-4\) | $-$ | $+$ | \(q+q^{2}+(1+\beta )q^{3}+q^{4}+(2-2\beta )q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(242))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(242)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 2}\)