Properties

Label 242.3
Level 242
Weight 3
Dimension 1190
Nonzero newspaces 4
Newform subspaces 13
Sturm bound 10890
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 242 = 2 \cdot 11^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 13 \)
Sturm bound: \(10890\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(242))\).

Total New Old
Modular forms 3790 1190 2600
Cusp forms 3470 1190 2280
Eisenstein series 320 0 320

Trace form

\( 1190 q + 40 q^{6} + 60 q^{7} + 40 q^{9} - 10 q^{11} - 40 q^{12} - 60 q^{13} - 80 q^{14} - 80 q^{15} - 60 q^{17} - 80 q^{18} + 60 q^{19} + 140 q^{23} + 80 q^{24} + 120 q^{25} + 240 q^{26} + 120 q^{27} + 80 q^{28}+ \cdots + 420 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(242))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
242.3.b \(\chi_{242}(241, \cdot)\) 242.3.b.a 2 1
242.3.b.b 4
242.3.b.c 4
242.3.b.d 8
242.3.d \(\chi_{242}(161, \cdot)\) 242.3.d.a 8 4
242.3.d.b 8
242.3.d.c 8
242.3.d.d 8
242.3.d.e 8
242.3.d.f 16
242.3.d.g 16
242.3.f \(\chi_{242}(21, \cdot)\) 242.3.f.a 220 10
242.3.h \(\chi_{242}(7, \cdot)\) 242.3.h.a 880 40

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(242))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(242)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 2}\)