Properties

Label 242.3
Level 242
Weight 3
Dimension 1190
Nonzero newspaces 4
Newform subspaces 13
Sturm bound 10890
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 242=2112 242 = 2 \cdot 11^{2}
Weight: k k = 3 3
Nonzero newspaces: 4 4
Newform subspaces: 13 13
Sturm bound: 1089010890
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M3(Γ1(242))M_{3}(\Gamma_1(242)).

Total New Old
Modular forms 3790 1190 2600
Cusp forms 3470 1190 2280
Eisenstein series 320 0 320

Trace form

1190q+40q6+60q7+40q910q1140q1260q1380q1480q1560q1780q18+60q19+140q23+80q24+120q25+240q26+120q27+80q28++420q99+O(q100) 1190 q + 40 q^{6} + 60 q^{7} + 40 q^{9} - 10 q^{11} - 40 q^{12} - 60 q^{13} - 80 q^{14} - 80 q^{15} - 60 q^{17} - 80 q^{18} + 60 q^{19} + 140 q^{23} + 80 q^{24} + 120 q^{25} + 240 q^{26} + 120 q^{27} + 80 q^{28}+ \cdots + 420 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(Γ1(242))S_{3}^{\mathrm{new}}(\Gamma_1(242))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
242.3.b χ242(241,)\chi_{242}(241, \cdot) 242.3.b.a 2 1
242.3.b.b 4
242.3.b.c 4
242.3.b.d 8
242.3.d χ242(161,)\chi_{242}(161, \cdot) 242.3.d.a 8 4
242.3.d.b 8
242.3.d.c 8
242.3.d.d 8
242.3.d.e 8
242.3.d.f 16
242.3.d.g 16
242.3.f χ242(21,)\chi_{242}(21, \cdot) 242.3.f.a 220 10
242.3.h χ242(7,)\chi_{242}(7, \cdot) 242.3.h.a 880 40

Decomposition of S3old(Γ1(242))S_{3}^{\mathrm{old}}(\Gamma_1(242)) into lower level spaces

S3old(Γ1(242)) S_{3}^{\mathrm{old}}(\Gamma_1(242)) \cong S3new(Γ1(1))S_{3}^{\mathrm{new}}(\Gamma_1(1))6^{\oplus 6}\oplusS3new(Γ1(2))S_{3}^{\mathrm{new}}(\Gamma_1(2))3^{\oplus 3}\oplusS3new(Γ1(11))S_{3}^{\mathrm{new}}(\Gamma_1(11))4^{\oplus 4}\oplusS3new(Γ1(22))S_{3}^{\mathrm{new}}(\Gamma_1(22))2^{\oplus 2}\oplusS3new(Γ1(121))S_{3}^{\mathrm{new}}(\Gamma_1(121))2^{\oplus 2}