Defining parameters
Level: | \( N \) | = | \( 2420 = 2^{2} \cdot 5 \cdot 11^{2} \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 24 \) | ||
Sturm bound: | \(1045440\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(2420))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 351680 | 184114 | 167566 |
Cusp forms | 345280 | 182430 | 162850 |
Eisenstein series | 6400 | 1684 | 4716 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(2420))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(2420))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(2420)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(110))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(220))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(242))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(484))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(605))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(1210))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2420))\)\(^{\oplus 1}\)