Properties

Label 2420.3
Level 2420
Weight 3
Dimension 182430
Nonzero newspaces 24
Sturm bound 1045440
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2420 = 2^{2} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(1045440\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(2420))\).

Total New Old
Modular forms 351680 184114 167566
Cusp forms 345280 182430 162850
Eisenstein series 6400 1684 4716

Trace form

\( 182430 q - 92 q^{2} + 2 q^{3} - 94 q^{4} - 280 q^{5} - 286 q^{6} + 46 q^{7} - 98 q^{8} - 148 q^{9} - 139 q^{10} - 10 q^{11} - 130 q^{12} - 238 q^{13} - 174 q^{14} - 218 q^{15} - 622 q^{16} - 502 q^{17}+ \cdots + 920 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(2420))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2420.3.c \(\chi_{2420}(1211, \cdot)\) n/a 436 1
2420.3.e \(\chi_{2420}(1209, \cdot)\) n/a 108 1
2420.3.f \(\chi_{2420}(241, \cdot)\) 2420.3.f.a 16 1
2420.3.f.b 16
2420.3.f.c 16
2420.3.f.d 24
2420.3.h \(\chi_{2420}(2179, \cdot)\) n/a 636 1
2420.3.i \(\chi_{2420}(483, \cdot)\) n/a 1264 2
2420.3.j \(\chi_{2420}(1453, \cdot)\) n/a 218 2
2420.3.n \(\chi_{2420}(1219, \cdot)\) n/a 2528 4
2420.3.p \(\chi_{2420}(161, \cdot)\) n/a 288 4
2420.3.q \(\chi_{2420}(1129, \cdot)\) n/a 432 4
2420.3.s \(\chi_{2420}(251, \cdot)\) n/a 1728 4
2420.3.x \(\chi_{2420}(403, \cdot)\) n/a 5056 8
2420.3.y \(\chi_{2420}(493, \cdot)\) n/a 864 8
2420.3.z \(\chi_{2420}(109, \cdot)\) n/a 1320 10
2420.3.bb \(\chi_{2420}(111, \cdot)\) n/a 5280 10
2420.3.bd \(\chi_{2420}(199, \cdot)\) n/a 7880 10
2420.3.bf \(\chi_{2420}(21, \cdot)\) n/a 880 10
2420.3.bi \(\chi_{2420}(133, \cdot)\) n/a 2640 20
2420.3.bj \(\chi_{2420}(43, \cdot)\) n/a 15760 20
2420.3.bl \(\chi_{2420}(41, \cdot)\) n/a 3520 40
2420.3.bn \(\chi_{2420}(59, \cdot)\) n/a 31520 40
2420.3.bp \(\chi_{2420}(31, \cdot)\) n/a 21120 40
2420.3.br \(\chi_{2420}(29, \cdot)\) n/a 5280 40
2420.3.bs \(\chi_{2420}(37, \cdot)\) n/a 10560 80
2420.3.bt \(\chi_{2420}(7, \cdot)\) n/a 63040 80

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(2420))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(2420)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(110))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(220))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(242))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(484))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(605))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(1210))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2420))\)\(^{\oplus 1}\)