Properties

Label 2420.3
Level 2420
Weight 3
Dimension 182430
Nonzero newspaces 24
Sturm bound 1045440
Trace bound 2

Downloads

Learn more

Defining parameters

Level: N N = 2420=225112 2420 = 2^{2} \cdot 5 \cdot 11^{2}
Weight: k k = 3 3
Nonzero newspaces: 24 24
Sturm bound: 10454401045440
Trace bound: 22

Dimensions

The following table gives the dimensions of various subspaces of M3(Γ1(2420))M_{3}(\Gamma_1(2420)).

Total New Old
Modular forms 351680 184114 167566
Cusp forms 345280 182430 162850
Eisenstein series 6400 1684 4716

Trace form

182430q92q2+2q394q4280q5286q6+46q798q8148q9139q1010q11130q12238q13174q14218q15622q16502q17++920q99+O(q100) 182430 q - 92 q^{2} + 2 q^{3} - 94 q^{4} - 280 q^{5} - 286 q^{6} + 46 q^{7} - 98 q^{8} - 148 q^{9} - 139 q^{10} - 10 q^{11} - 130 q^{12} - 238 q^{13} - 174 q^{14} - 218 q^{15} - 622 q^{16} - 502 q^{17}+ \cdots + 920 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(Γ1(2420))S_{3}^{\mathrm{new}}(\Gamma_1(2420))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
2420.3.c χ2420(1211,)\chi_{2420}(1211, \cdot) n/a 436 1
2420.3.e χ2420(1209,)\chi_{2420}(1209, \cdot) n/a 108 1
2420.3.f χ2420(241,)\chi_{2420}(241, \cdot) 2420.3.f.a 16 1
2420.3.f.b 16
2420.3.f.c 16
2420.3.f.d 24
2420.3.h χ2420(2179,)\chi_{2420}(2179, \cdot) n/a 636 1
2420.3.i χ2420(483,)\chi_{2420}(483, \cdot) n/a 1264 2
2420.3.j χ2420(1453,)\chi_{2420}(1453, \cdot) n/a 218 2
2420.3.n χ2420(1219,)\chi_{2420}(1219, \cdot) n/a 2528 4
2420.3.p χ2420(161,)\chi_{2420}(161, \cdot) n/a 288 4
2420.3.q χ2420(1129,)\chi_{2420}(1129, \cdot) n/a 432 4
2420.3.s χ2420(251,)\chi_{2420}(251, \cdot) n/a 1728 4
2420.3.x χ2420(403,)\chi_{2420}(403, \cdot) n/a 5056 8
2420.3.y χ2420(493,)\chi_{2420}(493, \cdot) n/a 864 8
2420.3.z χ2420(109,)\chi_{2420}(109, \cdot) n/a 1320 10
2420.3.bb χ2420(111,)\chi_{2420}(111, \cdot) n/a 5280 10
2420.3.bd χ2420(199,)\chi_{2420}(199, \cdot) n/a 7880 10
2420.3.bf χ2420(21,)\chi_{2420}(21, \cdot) n/a 880 10
2420.3.bi χ2420(133,)\chi_{2420}(133, \cdot) n/a 2640 20
2420.3.bj χ2420(43,)\chi_{2420}(43, \cdot) n/a 15760 20
2420.3.bl χ2420(41,)\chi_{2420}(41, \cdot) n/a 3520 40
2420.3.bn χ2420(59,)\chi_{2420}(59, \cdot) n/a 31520 40
2420.3.bp χ2420(31,)\chi_{2420}(31, \cdot) n/a 21120 40
2420.3.br χ2420(29,)\chi_{2420}(29, \cdot) n/a 5280 40
2420.3.bs χ2420(37,)\chi_{2420}(37, \cdot) n/a 10560 80
2420.3.bt χ2420(7,)\chi_{2420}(7, \cdot) n/a 63040 80

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S3old(Γ1(2420))S_{3}^{\mathrm{old}}(\Gamma_1(2420)) into lower level spaces

S3old(Γ1(2420)) S_{3}^{\mathrm{old}}(\Gamma_1(2420)) \cong S3new(Γ1(1))S_{3}^{\mathrm{new}}(\Gamma_1(1))18^{\oplus 18}\oplusS3new(Γ1(2))S_{3}^{\mathrm{new}}(\Gamma_1(2))12^{\oplus 12}\oplusS3new(Γ1(4))S_{3}^{\mathrm{new}}(\Gamma_1(4))6^{\oplus 6}\oplusS3new(Γ1(5))S_{3}^{\mathrm{new}}(\Gamma_1(5))9^{\oplus 9}\oplusS3new(Γ1(10))S_{3}^{\mathrm{new}}(\Gamma_1(10))6^{\oplus 6}\oplusS3new(Γ1(11))S_{3}^{\mathrm{new}}(\Gamma_1(11))12^{\oplus 12}\oplusS3new(Γ1(20))S_{3}^{\mathrm{new}}(\Gamma_1(20))3^{\oplus 3}\oplusS3new(Γ1(22))S_{3}^{\mathrm{new}}(\Gamma_1(22))8^{\oplus 8}\oplusS3new(Γ1(44))S_{3}^{\mathrm{new}}(\Gamma_1(44))4^{\oplus 4}\oplusS3new(Γ1(55))S_{3}^{\mathrm{new}}(\Gamma_1(55))6^{\oplus 6}\oplusS3new(Γ1(110))S_{3}^{\mathrm{new}}(\Gamma_1(110))4^{\oplus 4}\oplusS3new(Γ1(121))S_{3}^{\mathrm{new}}(\Gamma_1(121))6^{\oplus 6}\oplusS3new(Γ1(220))S_{3}^{\mathrm{new}}(\Gamma_1(220))2^{\oplus 2}\oplusS3new(Γ1(242))S_{3}^{\mathrm{new}}(\Gamma_1(242))4^{\oplus 4}\oplusS3new(Γ1(484))S_{3}^{\mathrm{new}}(\Gamma_1(484))2^{\oplus 2}\oplusS3new(Γ1(605))S_{3}^{\mathrm{new}}(\Gamma_1(605))3^{\oplus 3}\oplusS3new(Γ1(1210))S_{3}^{\mathrm{new}}(\Gamma_1(1210))2^{\oplus 2}