Properties

Label 243.3.d
Level $243$
Weight $3$
Character orbit 243.d
Rep. character $\chi_{243}(80,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $48$
Newform subspaces $10$
Sturm bound $81$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 243.d (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 10 \)
Sturm bound: \(81\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(243, [\chi])\).

Total New Old
Modular forms 126 48 78
Cusp forms 90 48 42
Eisenstein series 36 0 36

Trace form

\( 48 q + 48 q^{4} - 3 q^{7} + 15 q^{13} - 96 q^{16} + 42 q^{19} + 120 q^{25} - 48 q^{28} - 48 q^{31} - 18 q^{34} - 66 q^{37} + 90 q^{40} + 96 q^{43} + 252 q^{46} - 207 q^{49} - 120 q^{52} - 72 q^{55} - 72 q^{58}+ \cdots - 633 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(243, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
243.3.d.a 243.d 9.d $2$ $6.621$ \(\Q(\sqrt{-3}) \) None 243.3.b.g \(-3\) \(0\) \(-12\) \(1\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+(-8+4\zeta_{6})q^{5}+\cdots\)
243.3.d.b 243.d 9.d $2$ $6.621$ \(\Q(\sqrt{-3}) \) None 243.3.b.f \(-3\) \(0\) \(15\) \(10\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+(10-5\zeta_{6})q^{5}+\cdots\)
243.3.d.c 243.d 9.d $2$ $6.621$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 243.3.b.b \(0\) \(0\) \(0\) \(-11\) $\mathrm{U}(1)[D_{6}]$ \(q-4\zeta_{6}q^{4}+(-11+11\zeta_{6})q^{7}+22\zeta_{6}q^{13}+\cdots\)
243.3.d.d 243.d 9.d $2$ $6.621$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 243.3.b.a \(0\) \(0\) \(0\) \(-2\) $\mathrm{U}(1)[D_{6}]$ \(q-4\zeta_{6}q^{4}+(-2+2\zeta_{6})q^{7}-23\zeta_{6}q^{13}+\cdots\)
243.3.d.e 243.d 9.d $2$ $6.621$ \(\Q(\sqrt{-3}) \) None 243.3.b.f \(3\) \(0\) \(-15\) \(10\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+(-10+5\zeta_{6})q^{5}+\cdots\)
243.3.d.f 243.d 9.d $2$ $6.621$ \(\Q(\sqrt{-3}) \) None 243.3.b.g \(3\) \(0\) \(12\) \(1\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+(8-4\zeta_{6})q^{5}+\cdots\)
243.3.d.g 243.d 9.d $4$ $6.621$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 243.3.b.e \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{3}q^{2}+(2+2\beta _{1})q^{4}+(-\beta _{2}+\beta _{3})q^{5}+\cdots\)
243.3.d.h 243.d 9.d $4$ $6.621$ \(\Q(\zeta_{12})\) None 243.3.b.d \(0\) \(0\) \(0\) \(-22\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta_1 q^{2}+5\beta_{2} q^{4}+(2\beta_{3}-2\beta_1)q^{5}+\cdots\)
243.3.d.i 243.d 9.d $4$ $6.621$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 243.3.b.c \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{2}q^{2}+(11+11\beta _{1})q^{4}+(-\beta _{2}+\beta _{3})q^{5}+\cdots\)
243.3.d.j 243.d 9.d $24$ $6.621$ None 243.3.b.h \(0\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{3}^{\mathrm{old}}(243, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(243, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)