Properties

Label 2448.4.bk
Level $2448$
Weight $4$
Character orbit 2448.bk
Rep. character $\chi_{2448}(1189,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $1076$
Sturm bound $1728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2448.bk (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 272 \)
Character field: \(\Q(i)\)
Sturm bound: \(1728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2448, [\chi])\).

Total New Old
Modular forms 2608 1084 1524
Cusp forms 2576 1076 1500
Eisenstein series 32 8 24

Trace form

\( 1076 q + 4 q^{2} - 4 q^{4} + 4 q^{8} - 4 q^{13} - 268 q^{16} + 4 q^{17} + 44 q^{19} + 4 q^{26} + 1604 q^{32} - 64 q^{34} + 504 q^{35} + 1260 q^{38} - 4 q^{43} + 1888 q^{47} + 51540 q^{49} + 2104 q^{50}+ \cdots - 3668 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2448, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2448, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2448, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(272, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(816, [\chi])\)\(^{\oplus 2}\)