Properties

Label 245.10.e
Level $245$
Weight $10$
Character orbit 245.e
Rep. character $\chi_{245}(116,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $240$
Sturm bound $280$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(280\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(245, [\chi])\).

Total New Old
Modular forms 520 240 280
Cusp forms 488 240 248
Eisenstein series 32 0 32

Trace form

\( 240 q - 68 q^{2} + 324 q^{3} - 30380 q^{4} + 1250 q^{5} - 4544 q^{6} + 135864 q^{8} - 802522 q^{9} + 20000 q^{10} + 129358 q^{11} + 193502 q^{12} - 639344 q^{13} - 530000 q^{15} - 6855536 q^{16} + 726916 q^{17}+ \cdots - 2236478452 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(245, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{10}^{\mathrm{old}}(245, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(245, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)