Defining parameters
Level: | \( N \) | \(=\) | \( 245 = 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 245.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Sturm bound: | \(280\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(245, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 520 | 240 | 280 |
Cusp forms | 488 | 240 | 248 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(245, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{10}^{\mathrm{old}}(245, [\chi])\) into lower level spaces
\( S_{10}^{\mathrm{old}}(245, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)